Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external knowledge. Current hybrid RAG system retrieves evidence from both knowledge graphs (KGs) and text documents to support LLM reasoning. However, it faces challenges like handling multi-hop reasoning, multi-entity questions, multi-source verification, and effective graph utilization. To address these limitations, we present HydraRAG, a training-free framework that unifies graph topology, document semantics, and source reliability to support deep, faithful reasoning in LLMs. HydraRAG handles multi-hop and multi-entity problems through agent-driven exploration that combines structured and unstructured retrieval, increasing both diversity and precision of evidence. To tackle multi-source verification, HydraRAG uses a tri-factor cross-source verification (source trustworthiness assessment, cross-source corroboration, and entity-path alignment), to balance topic relevance with cross-modal agreement. By leveraging graph structure, HydraRAG fuses heterogeneous sources, guides efficient exploration, and prunes noise early. Comprehensive experiments on seven benchmark datasets show that HydraRAG achieves overall state-of-the-art results on all benchmarks with GPT-3.5-Turbo, outperforming the strong hybrid baseline ToG-2 by an average of 20.3% and up to 30.1%. Furthermore, HydraRAG enables smaller models (e.g., Llama-3.1-8B) to achieve reasoning performance comparable to that of GPT-4-Turbo. The source code is available on https://stevetantan.github.io/HydraRAG/.
Large Language Models (LLMs) can undergo hallucinations in specialized domains, and standard Retrieval-Augmented Generation (RAG) often falters due to general-purpose embeddings ill-suited for domain-specific terminology. Though domain-specific fine-tuning enhances retrieval, centralizing data introduces privacy risks. The use of federated learning (FL) can alleviate this to some extent, but faces challenges of data heterogeneity, poor personalization, and expensive training data generation. We propose pFedRAG, a novel Personalized Federated RAG framework, which enables efficient collaborative fine-tuning of embedding models to address these challenges. The key contribution is a new Depth-Adaptive Tiered Embedding (DATE) architecture, which comprises a Global Shared Layer, combined using FL to capture common knowledge, and a Personalized Layer with adjustable depth tailored for local data and training results of each client. The depth is locally controlled based on crafted metrics and scoring criteria. Also, pFedRAG incorporates a fully client-side pipeline leveraging local small LLMs and vector database filtering to construct high-quality query-document pairs. Experiments on diverse medical non-IID document datasets demonstrate that pFedRAG significantly reduces communication costs, handles data heterogeneity, and improves retrieval performance. Human evaluations confirm the enhanced response quality of pFedRAG.
Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy.
Word similarity is widely used in machine learning applications like searching engine and recommendation. Measuring the changing meaning of the same word between two different sentences is not only a way to handle complex features in word usage (such as sentence syntax and semantics), but also an important method for different word polysemy modeling. In this paper, we present the methodology proposed by team Ferryman. Our system is based on the Bidirectional Encoder Representations from Transformers (BERT) model combined with term frequency-inverse document frequency (TF-IDF), applying the method on the provided datasets called CoSimLex, which covers four different languages including English, Croatian, Slovene, and Finnish. Our team Ferryman wins the the first position for English task and the second position for Finnish in the subtask 1.