Xiaoyu Wang


2025

pdf bib
DenseLoRA: Dense Low-Rank Adaptation of Large Language Models
Lin Mu | Xiaoyu Wang | Li Ni | Yang Li | Zhize Wu | Peiquan Jin | Yiwen Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs) by fine-tuning two low-rank matrices, thereby reducing the number of trainable parameters. However, prior research indicates that many of the weights in these matrices are redundant, leading to inefficiencies in parameter utilization. To address this limitation, we introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA. DenseLoRA builds upon the concept of representation fine-tuning, incorporating a single Encoder-Decoder to refine and compress hidden representations across all adaptation layers before applying adaptation. Instead of relying on two redundant low-rank matrices as in LoRA, DenseLoRA adapts LLMs through a dense low-rank matrix, improving parameter utilization and adaptation efficiency. We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA’s 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B. Additionally, we conduct extensive experiments to systematically assess the impact of DenseLoRA’s components on overall model performance.

pdf bib
ScaleBiO: Scalable Bilevel Optimization for LLM Data Reweighting
Rui Pan | Dylan Zhang | Hanning Zhang | Xingyuan Pan | Minrui Xu | Jipeng Zhang | Renjie Pi | Xiaoyu Wang | Tong Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Bilevel optimization has shown its utility across various machine learning settings, yet most algorithms in practice require second-order information, making it challenging to scale them up. Only recently, a paradigm of first-order algorithms has emerged in the theoretical literature, capable of effectively addressing bilevel optimization problems. Nevertheless, the practical efficiency of this paradigm remains unverified, particularly in the context of large language models (LLMs). This paper introduces the first scalable instantiation of this paradigm called _ScaleBiO_, focusing on bilevel optimization for large-scale LLM data reweighting. By combining with a recently proposed memory-efficient training technique called LISA, our novel algorithm allows the paradigm to scale to ~30B-sized LLMs on H100 GPUs, marking the first successful application of bilevel optimization under practical scenarios for large-sized LLMs. Empirically, extensive experiments on data reweighting verify the effectiveness of ScaleBiO for different-scaled models, including Llama-3-8B, Gemma-2-9B, Qwen-2-7B, and Qwen-2.5-32B, where bilevel optimization succeeds in instruction-following and math reasoning tasks, outperforming several popular baselines, including uniform sampling, influence-aware data filtering, and reference-model-based sampling methods. Theoretically, ScaleBiO ensures the optimality of the learned data weights, along with a convergence guarantee matching the conventional first-order bilevel optimization paradigm on smooth and strongly convex objectives.

pdf bib
Convert Language Model into a Value-based Strategic Planner
Xiaoyu Wang | Yue Zhao | Qingqing Gu | Zhonglin Jiang | Yong Chen | Luo Ji
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Q-learning on LLMs, and propose a framework called straQ*. Our framework allows a plug-and-play LLM to bootstrap the planning during ESC, determine the optimal strategy based on long-term returns, and finally guide the LLM to response. Substantial experiments on ESC datasets suggest that straQ* outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and finite state machines.

pdf bib
Dream to Chat: Model-based Reinforcement Learning on Dialogues with User Belief Modeling
Yue Zhao | Xiaoyu Wang | Dan Wang | Zhonglin Jiang | Qingqing Gu | Teng Chen | Ningyuan Xi | Jinxian Qu | Yong Chen | Luo Ji
Findings of the Association for Computational Linguistics: EMNLP 2025

World models have been widely utilized in robotics, gaming, and autonomous driving. However, their applications to natural language tasks are relatively limited. In this paper, we construct the dialogue world model, which could predict future utterances and user beliefs, including emotion, sentiment, and intention. In this paper, we propose a framework called DreamCUB, which shows that this user belief modeling and the entire dialogue world model can be established by LLM post-training. By defining a POMDP, we apply model-based reinforcement learning to the dialogue system and solve it by maximizing the information bottleneck. Experiments show that the pretrained dialogue world model can achieve state-of-the-art performances on emotion classification and sentiment identification, while dialogue quality is also enhanced by joint training of policy, critic and dialogue world model. Further analysis reveals that DreamCUB holds a reasonable exploration-exploitation balance and also transfers well to out-of-domain scenarios such as empathetic dialogues.

2022

pdf bib
Commonsense Knowledge Salience Evaluation with a Benchmark Dataset in E-commerce
Yincen Qu | Ningyu Zhang | Hui Chen | Zelin Dai | Chengming Wang | Xiaoyu Wang | Qiang Chen | Huajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

In e-commerce, the salience of commonsense knowledge (CSK) is beneficial for widespread applications such as product search and recommendation. For example, when users search for “running” in e-commerce, they would like to find products highly related to running, such as “running shoes” rather than “shoes”. Nevertheless, many existing CSK collections rank statements solely by confidence scores, and there is no information about which ones are salient from a human perspective. In this work, we define the task of supervised salience evaluation, where given a CSK triple, the model is required to learn whether the triple is salient or not. In addition to formulating the new task, we also release a new Benchmark dataset of Salience Evaluation in E-commerce (BSEE) and hope to promote related research on commonsense knowledge salience evaluation. We conduct experiments in the dataset with several representative baseline models. The experimental results show that salience evaluation is a hard task where models perform poorly on our evaluation set. We further propose a simple but effective approach, PMI-tuning, which shows promise for solving this novel problem. Code is available in https://github.com/OpenBGBenchmark/OpenBG-CSK.