Xiaohui Hu

Also published as: XiaoHui Hu


2025

pdf bib
Improve LLM-as-a-Judge Ability as a General Ability
Jiachen Yu | Shaoning Sun | Xiaohui Hu | Jiaxu Yan | Kaidong Yu | Xuelong Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

LLM-as-a-Judge leverages the generative and reasoning capabilities of large language models (LLMs) to evaluate LLM responses across diverse scenarios, providing accurate preference signals. This approach plays a vital role in aligning LLMs with human values. Recent studies have raised many methods to train LLM as generative judges, but most of them are data consuming or lack accuracy, and only focus on LLM’s judge ability. In this work, we conceptualize judging ability as a general capability of LLMs and adapt the two-stage SFT-DPO training framework—commonly used in traditional general model training—to the development of judge models. We introduce an efficient data synthesis method, which includes the automatic generation of various judge templates, dual verification for data accuracy and consistency. A difficulty-based data stratification strategy allows us to distribute more effective data to the SFT and DPO stages respectively. Experimental results demonstrate that our approach, utilizing only about 2% to 40% of the data required by other methods, achieves SOTA performance on RewardBench. Furthermore, our training method enhances the general capabilities of the model by constructing complicated judge task with CoT outputs. We further validate the effectiveness of our model by deploying it to provide reward signals in a real-world RLHF scenarios. We will open-source our model weights and training data to facilitate further research.

2022

pdf bib
Supporting Medical Relation Extraction via Causality-Pruned Semantic Dependency Forest
Yifan Jin | Jiangmeng Li | Zheng Lian | Chengbo Jiao | Xiaohui Hu
Proceedings of the 29th International Conference on Computational Linguistics

Medical Relation Extraction (MRE) task aims to extract relations between entities in medical texts. Traditional relation extraction methods achieve impressive success by exploring the syntactic information, e.g., dependency tree. However, the quality of the 1-best dependency tree for medical texts produced by an out-of-domain parser is relatively limited so that the performance of medical relation extraction method may degenerate. To this end, we propose a method to jointly model semantic and syntactic information from medical texts based on causal explanation theory. We generate dependency forests consisting of the semantic-embedded 1-best dependency tree. Then, a task-specific causal explainer is adopted to prune the dependency forests, which are further fed into a designed graph convolutional network to learn the corresponding representation for downstream task. Empirically, the various comparisons on benchmark medical datasets demonstrate the effectiveness of our model.

2020

pdf bib
Infusing Sequential Information into Conditional Masked Translation Model with Self-Review Mechanism
Pan Xie | Zhi Cui | Xiuying Chen | XiaoHui Hu | Jianwei Cui | Bin Wang
Proceedings of the 28th International Conference on Computational Linguistics

Non-autoregressive models generate target words in a parallel way, which achieve a faster decoding speed but at the sacrifice of translation accuracy. To remedy a flawed translation by non-autoregressive models, a promising approach is to train a conditional masked translation model (CMTM), and refine the generated results within several iterations. Unfortunately, such approach hardly considers the sequential dependency among target words, which inevitably results in a translation degradation. Hence, instead of solely training a Transformer-based CMTM, we propose a Self-Review Mechanism to infuse sequential information into it. Concretely, we insert a left-to-right mask to the same decoder of CMTM, and then induce it to autoregressively review whether each generated word from CMTM is supposed to be replaced or kept. The experimental results (WMT14 En ↔ De and WMT16 En ↔ Ro) demonstrate that our model uses dramatically less training computations than the typical CMTM, as well as outperforms several state-of-the-art non-autoregressive models by over 1 BLEU. Through knowledge distillation, our model even surpasses a typical left-to-right Transformer model, while significantly speeding up decoding.