Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models’ ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
Patients must possess the knowledge necessary to actively participate in their care. To this end, we developed NoteAid-Chatbot, a conversational AI designed to help patients better understand their health through a novel framework of learning as conversation. We introduce a new learning paradigm that leverages a multi-agent large language model (LLM) and reinforcement learning (RL) framework—without relying on costly human-generated training data. Specifically, NoteAid-Chatbot was built on a lightweight 3-billion-parameter LLaMA 3.2 model using a two-stage training approach: initial supervised fine-tuning on conversational data synthetically generated using medical conversation strategies, followed by RL with rewards derived from patient understanding assessments in simulated hospital discharge scenarios. Our evaluation, which includes comprehensive human-aligned assessments and case studies, demonstrates that NoteAid-Chatbot exhibits key emergent behaviors critical for patient education—such as clarity, relevance, and structured dialogue—even though it received no explicit supervision for these attributes. Our results show that even simple Proximal Policy Optimization (PPO)-based reward modeling can successfully train lightweight, domain-specific chatbots to handle multi-turn interactions, incorporate diverse educational strategies, and meet nuanced communication objectives. Our Turing test demonstrates that NoteAid-Chatbot surpasses non-expert human. Although our current focus is on healthcare, the framework we present illustrates the feasibility and promise of applying low-cost, PPO-based RL to realistic, open-ended conversational domains—broadening the applicability of RL-based alignment methods.
Automatic question generation (QG) is essential for AI and NLP, particularly in intelligent tutoring, dialogue systems, and fact verification. Generating multiple-choice questions (MCQG) for professional exams, like the United States Medical Licensing Examination (USMLE), is particularly challenging, requiring domain expertise and complex multi-hop reasoning for high-quality questions. However, current large language models (LLMs) like GPT-4 struggle with professional MCQG due to outdated knowledge, hallucination issues, and prompt sensitivity, resulting in unsatisfactory quality and difficulty. To address these challenges, we propose MCQG-SRefine, an LLM self-refine-based (Critique and Correction) framework for converting medical cases into high-quality USMLE-style questions. By integrating expert-driven prompt engineering with iterative self-critique and self-correction feedback, MCQG-SRefine significantly enhances human expert satisfaction regarding both the quality and difficulty of the questions. Furthermore, we introduce an LLM-as-Judge-based automatic metric to replace the complex and costly expert evaluation process, ensuring reliable and expert-aligned assessments.