Weitao Li
2025
Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
Weitao Li
|
Xiangyu Zhang
|
Kaiming Liu
|
Xuanyu Lei
|
Weizhi Ma
|
Yang Liu
Findings of the Association for Computational Linguistics: EMNLP 2025
Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an **E**fficient **D**ynamic **C**lustering-based document **C**ompression framework (**EDC2-RAG**) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at https://github.com/Tsinghua-dhy/EDC-2-RAG.
2024
Citation-Enhanced Generation for LLM-based Chatbots
Weitao Li
|
Junkai Li
|
Weizhi Ma
|
Yang Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our code and datasets can be found at https://github.com/Tsinghua-dhy/CEG.
Search
Fix author
Co-authors
- Yang Liu (刘扬) 2
- Weizhi Ma 2
- Xuanyu Lei 1
- Junkai Li 1
- Kaiming Liu 1
- show all...