Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model’s reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.
Contrastive Language-Image Pre-training (CLIP) has become the standard for cross- modal image-text representation learning. Improving CLIP typically requires additional data and retraining with new loss functions, but these demands raise resource and time costs, limiting practical use. In this work, we introduce HELIP, a cost-effective strategy that improves CLIP models by exploiting challenging text-image pairs within existing datasets in continuous training. This eliminates the need for additional data or extensive retraining. Moreover, HELIP integrates effortlessly into current training pipelines with minimal code modifications, allowing for quick and seamless implementation. On comprehensive benchmarks, HELIP consistently boosts existing models. In particular, within just two epochs of training, it improves zero-shot classification accuracy on ImageNet for SLIP models pre-trained on CC3M, CC12M, and YFCC15M datasets by 3.05%, 4.47%, and 10.1% , respectively. In addition, on fine-grained classification datasets, HELIP improves the zero-shot performance of CLIP and SLIP by an average of 8.4% and 18.6%, and their linear probe performance by an average of 9.5% and 3.0%.