Tianlun Liu
2025
Correlation-Aware Example Selection for In-Context Learning with Nonsymmetric Determinantal Point Processes
Qiunan Du
|
Zhiliang Tian
|
Zhen Huang
|
Kailun Bian
|
Tianlun Liu
|
Zhaoning Zhang
|
Xinwang Liu
|
Feng Liu
|
Dongsheng Li
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
LLMs with in-context learning (ICL) obtain remarkable performance but are sensitive to the quality of ICL examples. Prior works on ICL example selection explored unsupervised heuristic methods and supervised LLM-based methods, but they typically focus on the selection of individual examples and ignore correlations among examples. Researchers use the determinantal point process (DPP) to model negative correlations among examples to select diverse examples. However, the DPP fails to model positive correlations among examples, while ICL still requires the positive correlations of examples to ensure the consistency of examples, which provides a clear instruction for LLMs. In this paper, we propose an ICL example selection method based on the nonsymmetric determinantal point process (NDPP) to capture positive and negative correlations, considering both the diversity and the relevance among ICL examples. Specifically, we optimize NDPP via kernel decomposition-based MLE to fit a constructed pseudo-labeled dataset, where we also propose a low-rank decomposition to reduce the computational cost. Further, we perform query-aware kernel adaptation on our NDPP to customize the input query, and we select examples via a MAP inference based on the adapted NDPP. Experimental results show our model outperforms strong baselines in ICL example selection.
2024
Context-aware Watermark with Semantic Balanced Green-red Lists for Large Language Models
Yuxuan Guo
|
Zhiliang Tian
|
Yiping Song
|
Tianlun Liu
|
Liang Ding
|
Dongsheng Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Watermarking enables people to determine whether the text is generated by a specific model. It injects a unique signature based on the “green-red” list that can be tracked during detection, where the words in green lists are encouraged to be generated. Recent researchers propose to fix the green/red lists or increase the proportion of green tokens to defend against paraphrasing attacks. However, these methods cause degradation of text quality due to semantic disparities between the watermarked text and the unwatermarked text. In this paper, we propose a semantic-aware watermark method that considers contexts to generate a semantic-aware key to split a semantically balanced green/red list for watermark injection. The semantic balanced list reduces the performance drop due to adding bias on green lists. To defend against paraphrasing attacks, we generate the watermark key considering the semantics of contexts via locally sensitive hashing. To improve the text quality, we propose to split green/red lists considering semantics to enable the green list to cover almost all semantics. We also dynamically adapt the bias to balance text quality and robustness. The experiments show our advantages in both robustness and text quality comparable to existing baselines.
Search
Fix author
Co-authors
- Dongsheng Li 2
- Zhiliang Tian 2
- Kailun Bian 1
- Liang Ding 1
- Qiunan Du 1
- show all...