Reward models are essential for aligning large language models (LLMs) with human preferences. However, most open-source multilingual reward models are primarily trained on preference datasets in high-resource languages, resulting in unreliable reward signals for low-resource Indic languages. Collecting large-scale, high-quality preference data for these languages is prohibitively expensive, making preference-based training approaches impractical. To address this challenge, we propose RELIC, a novel in-context learning framework for reward modeling in low-resource Indic languages. RELIC trains a retriever with a pairwise ranking objective to select in-context examples from auxiliary high-resource languages that most effectively highlight the distinction between preferred and less-preferred responses. Extensive experiments on three preference datasets—PKU-SafeRLHF, WebGPT, and HH-RLHF—using state-of-the-art open-source reward models demonstrate that RELIC significantly improves reward model accuracy for low-resource Indic languages, consistently outperforming existing example selection methods. For example, on Bodo—a low-resource Indic language—using a LLaMA-3.2-3B reward model, RELIC achieves a 12.81% and 10.13% improvement in accuracy over zero-shot prompting and state-of-the-art example selection method, respectively
Large Language Models (LLMs) have recently demonstrated impressive few-shot learning capabilities through in-context learning (ICL). However, ICL performance is highly dependent on the choice of few-shot demonstrations, making the selection of the most optimal examples a persistent research challenge. This issue is further amplified in low-resource Indic languages, where the scarcity of ground-truth data complicates the selection process. In this work, we propose PromptRefine, a novel Alternating Minimization approach for example selection that improves ICL performance on low-resource Indic languages. PromptRefine leverages auxiliary example banks from related high-resource Indic languages and employs multi-task learning techniques to align language-specific retrievers, enabling effective cross-language retrieval. Additionally, we incorporate diversity in the selected examples to enhance generalization and reduce bias. Through comprehensive evaluations on four text generation tasks—Cross-Lingual Question Answering, Multilingual Question Answering, Machine Translation, and Cross-Lingual Summarization using state-of-the-art LLMs such as LLAMA-3.1-8B, LLAMA-2-7B, Qwen-2-7B, and Qwen-2.5-7B, we demonstrate that PromptRefine significantly outperforms existing frameworks for retrieving examples.
Image-text contrastive models such as CLIP learn transferable and robust representations for zero-shot transfer to a variety of downstream tasks. However, to obtain strong downstream performances, prompts need to be carefully curated, which can be a tedious engineering task. To address the issue of manual prompt engineering, prompt-tuning is used where a set of contextual vectors are learned by leveraging information from the training data. Despite their effectiveness, existing prompt-tuning frameworks often lack interpretability, thus limiting their ability to understand the compositional nature of images. In this work, we first identify that incorporating compositional attributes (e.g., a “green” tree frog) in the design of manual prompts can significantly enhance image-text alignment scores. Building upon this observation, we propose a novel and interpretable prompt-tuning method named IntCoOp, which learns to jointly align attribute-level inductive biases and class embeddings during prompt-tuning. To assess the effectiveness of our approach, we evaluate IntCoOp across two representative tasks in a few-shot learning setup: generalization to novel classes, and unseen domain shifts. Through extensive experiments across 10 downstream datasets on CLIP, we find that introducing attribute-level inductive biases leads to superior performance against state-of-art prompt tuning frameworks. Notably, in a 16-shot setup, IntCoOp improves CoOp by 7.35% in average performance across 10 diverse datasets.