Sona Elza Simon
2025
LoFTI: Localization and Factuality Transfer to Indian Locales
Sona Elza Simon
|
Soumen Kumar Mondal
|
Abhishek Singhania
|
Sayambhu Sen
|
Preethi Jyothi
Findings of the Association for Computational Linguistics: ACL 2025
Large language models (LLMs) encode vast amounts of world knowledge acquired via training on large web-scale datasets crawled from the internet. However, the datasets used to train the LLMs typically exhibit a geographical bias towards English-speaking Western countries. This results in LLMs producing biased or hallucinated responses to queries that require answers localized to other geographical regions. In this work, we introduce a new benchmark named LoFTI (Localization and Factuality Transfer to Indian Locales) that can be used to evaluate an LLM’s contextual localization and factual text transfer capabilities. LoFTI consists of factual statements about entities in source and target locations; the source locations are spread across the globe and the target locations are all within India with varying degrees of hyperlocality (country, states, cities). The entities span a wide variety of categories. We use LoFTI to evaluate Mixtral, Llama3.3-70B, GPT-4 and two other Mixtral-based approaches well-suited to the task of localized factual transfer. We demonstrate that LoFTI is a high-quality evaluation benchmark and all the models, including GPT-4, produce skewed results across varying levels of hyperlocality.
DeFT-X: Denoised Sparse Fine-Tuning for Zero-Shot Cross-Lingual Transfer
Sona Elza Simon
|
Preethi Jyothi
Findings of the Association for Computational Linguistics: EMNLP 2025
Effective cross-lingual transfer remains a critical challenge in scaling the benefits of large language models from high-resource to low-resource languages. Towards this goal, prior studies have explored many approaches to combine task knowledge from task-specific data in a (high-resource) source language and language knowledge from unlabeled text in a (low-resource) target language. One notable approach proposed composable sparse fine-tuning (SFT) for cross-lingual transfer that learns task-specific and language-specific sparse masks to select a subset of the pretrained model’s parameters that are further fine-tuned. These sparse fine-tuned vectors (SFTs) are subsequently composed with the pretrained model to facilitate zero-shot cross-lingual transfer to a task in a target language, using only task-specific data from a source language. These sparse masks for SFTs were identified using a simple magnitude-based pruning. In our work, we introduce DeFT-X, a novel composable SFT approach that denoises the weight matrices of a pretrained model before magnitude pruning using singular value decomposition, thus yielding more robust SFTs. We evaluate DeFT-X on a diverse set of extremely low-resource languages for sentiment classification (NusaX) and natural language inference (AmericasNLI) and demonstrate that it performs at par or outperforms SFT and other prominent cross-lingual transfer baselines.