Simyung Chang


2025

pdf bib
CIFLEX: Contextual Instruction Flow for Sub-task Execution in Multi-Turn Interactions with a Single On-Device LLM
Juntae Lee | Jihwan Bang | Seunghan Yang | Simyung Chang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We present CIFLEX (Contextual Instruction FLow with EXecution), a novel execution system for efficient sub-task handling in multi-turn interactions with a single on-device large language model (LLM). As LLMs become increasingly capable, a single model is expected to handle diverse sub-tasks that more effectively and comprehensively support answering user requests. Naive approach reprocesses the entire conversation context when switching between main and sub-tasks (e.g., query rewriting, summarization), incurring significant computational overhead. CIFLEX mitigates this overhead by reusing the key-value (KV) cache from the main task and injecting only task-specific instructions into isolated side paths. After sub-task execution, the model rolls back to the main path via cached context, thereby avoiding redundant prefill computation. To support sub-task selection, we also develop a hierarchical classification strategy tailored for small-scale models, decomposing multi-choice decisions into binary ones. Experiments show that CIFLEX significantly reduces computational costs without degrading task performance, enabling scalable and efficient multi-task dialogue on-device.

pdf bib
Learning Contextual Retrieval for Robust Conversational Search
Seunghan Yang | Juntae Lee | Jihwan Bang | Kyuhong Shim | Minsoo Kim | Simyung Chang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Effective conversational search demands a deep understanding of user intent across multiple dialogue turns. Users frequently use abbreviations and shift topics in the middle of conversations, posing challenges for conventional retrievers. While query rewriting techniques improve clarity, they often incur significant computational cost due to additional autoregressive steps. Moreover, although LLM-based retrievers demonstrate strong performance, they are not explicitly optimized to track user intent in multi-turn settings, often failing under topic drift or contextual ambiguity. To address these limitations, we propose ContextualRetriever, a novel LLM-based retriever that directly incorporates conversational context into the retrieval process. Our approach introduces: (1) a context-aware embedding mechanism that highlights the current query within the dialogue history; (2) intent-guided supervision based on high-quality rewritten queries; and (3) a training strategy that preserves the generative capabilities of the base LLM. Extensive evaluations across multiple conversational search benchmarks demonstrate that ContextualRetriever significantly outperforms existing methods while incurring no additional inference overhead.

pdf bib
Chain-of-Rank: Enhancing Large Language Models for Domain-Specific RAG in Edge Device
Juntae Lee | Jihwan Bang | Kyuhong Shim | Seunghan Yang | Simyung Chang
Findings of the Association for Computational Linguistics: NAACL 2025

Retrieval-augmented generation (RAG) with large language models (LLMs) is especially valuable in specialized domains, where precision is critical. To more specialize the LLMs into a target domain, domain-specific RAG has recently been developed by allowing the LLM to access the target domain early via finetuning. The domain-specific RAG makes more sense in resource-constrained environments like edge devices, as they should perform a specific task (e.g. personalization) reliably using only small-scale LLMs. While the domain-specific RAG is well-aligned with edge devices in this respect, it often relies on widely-used reasoning techniques like chain-of-thought (CoT). The reasoning step is useful to understand the given external knowledge, and yet it is computationally expensive and difficult for small-scale LLMs to learn it. Tackling this, we propose the Chain of Rank (CoR) which shifts the focus from intricate lengthy reasoning to simple ranking of the reliability of input external documents. Then, CoR reduces computational complexity while maintaining high accuracy, making it particularly suited for resource-constrained environments. We attain the state-of-the-art (SOTA) results in benchmarks, and analyze its efficacy.

2024

pdf bib
Crayon: Customized On-Device LLM via Instant Adapter Blending and Edge-Server Hybrid Inference
Jihwan Bang | Juntae Lee | Kyuhong Shim | Seunghan Yang | Simyung Chang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The customization of large language models (LLMs) for user-specified tasks gets important. However, maintaining all the customized LLMs on cloud servers incurs substantial memory and computational overheads, and uploading user data can also lead to privacy concerns. On-device LLMs can offer a promising solution by mitigating these issues. Yet, the performance of on-device LLMs is inherently constrained by the limitations of small-scaled models. To overcome these restrictions, we first propose Crayon, a novel approach for on-device LLM customization. Crayon begins by constructing a pool of diverse base adapters, and then we instantly blend them into a customized adapter without extra training. In addition, we develop a device-server hybrid inference strategy, which deftly allocates more demanding queries or non-customized tasks to a larger, more capable LLM on a server. This ensures optimal performance without sacrificing the benefits of on-device customization. We carefully craft a novel benchmark from multiple question-answer datasets, and show the efficacy of our method in the LLM customization.

pdf bib
InfiniPot: Infinite Context Processing on Memory-Constrained LLMs
Minsoo Kim | Kyuhong Shim | Jungwook Choi | Simyung Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.

pdf bib
Semantic Token Reweighting for Interpretable and Controllable Text Embeddings in CLIP
Eunji Kim | Kyuhong Shim | Simyung Chang | Sungroh Yoon
Findings of the Association for Computational Linguistics: EMNLP 2024

A text encoder within Vision-Language Models (VLMs) like CLIP plays a crucial role in translating textual input into an embedding space shared with images, thereby facilitating the interpretative analysis of vision tasks through natural language. Despite the varying significance of different textual elements within a sentence depending on the context, efforts to account for variation of importance in constructing text embeddings have been lacking. We propose a framework of Semantic Token Reweighting to build Interpretable text embeddings (SToRI), which incorporates controllability as well. SToRI refines the text encoding process in CLIP by differentially weighting semantic elements based on contextual importance, enabling finer control over emphasis responsive to data-driven insights and user preferences. The efficacy of SToRI is demonstrated through comprehensive experiments on few-shot image classification and image retrieval tailored to user preferences.

2022

pdf bib
Quadapter: Adapter for GPT-2 Quantization
Minseop Park | Jaeseong You | Markus Nagel | Simyung Chang
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer language models such as GPT-2 are difficult to quantize because of outliers in the activations leading to a large quantization error. To adapt to the error, one must use quantization-aware training, which entails a fine-tuning process based on the dataset and the training pipeline identical to those for the original model. Pretrained language models, however, often do not grant access to their datasets and training pipelines, forcing us to rely on arbitrary ones for fine-tuning. In that case, it is observed that quantization-aware training overfits the model to the fine-tuning data. To this end introduced is a quantization adapter (Quadapter), a small set of parameters that are learned to make activations quantization-friendly by scaling them channel-wise.For quantization without overfitting, we introduce a quantization adapter (Quadapter), a small set of parameters that are learned to make activations quantization-friendly by scaling them channel-wise. It keeps the model parameters unchanged. By applying our method to the challenging task of quantizing GPT-2, we demonstrate that it effectively prevents the overfitting and improves the quantization performance.