Data efficiency is crucial in domain-specific continual pre-training (CPT) of large language models (LLMs), especially under resource constraints. Aiming for “small data, big impact,” this work addresses the limitations of existing domain-specific data selection strategies, which often rely on scarce labeled data or computationally expensive LLMs. We introduce CDF Sampling with Grammatical Complexity (CDF-GC), an annotation-independent, efficient and interpretable data selection framework for CPT. Our approach comprehensively evaluates grammatical complexity using lexical diversity and syntactic complexity, and employs a cumulative distribution function (CDF)-based sampling strategy to balance complexity and diversity. To validate the effectiveness of CDF-GC, we conducted experiments on a financial dataset. The results demonstrate that CDF-GC significantly outperforms baselines, achieving 2.0% improvement in financial QA at the same selection ratio and even surpassing full-data training by 1.7% using only 20% of the data.
Despite the rapid development of large language models (LLMs), existing benchmark datasets often focus on low-level cognitive tasks, such as factual recall and basic comprehension, while providing limited coverage of higher-level reasoning skills, including analysis, evaluation, and creation. In this work, we systematically assess the cognitive depth of popular LLM benchmarks using Bloom’s Taxonomy to evaluate both the cognitive and knowledge dimensions.Our analysis reveals a pronounced imbalance: most datasets concentrate on “Remembering” and “Understanding”, with metacognitive and creative reasoning largely underrepresented. We also find that incorporating higher-level cognitive instructions into the current instruction fine-tuning process improves model performance. These findings highlight the importance of future benchmarks incorporating metacognitive evaluations to more accurately assess and enhance model performance.
Concept reasoning is an important capability for models to understand the world. However, the existing datasets, such as concept extraction and concept generation, suffer from modeledge leakage and context leakage. To address these limitations, we construct a dataset of concept reasoning for large language models (CR-LLM) with modeledge leakage prevention and context leakage prevention, which consists of 2,167 samples and covers different concept types. In addition, we propose a hybrid reasoning method, consisting of inductive reasoning, deductive reasoning and a controller. This method allows large language models to adaptively select the optimal reasoning method for each input sample. Finally, we conduct extensive experiments on CR-LLM using different models and methods. The results show that existing large language models and reasoning methods perform sub-optimally in the concept reasoning task. In contrast, our proposed method significantly improves the capabilities, achieving a 7% increase in accuracy compared to CoT and demonstrating better granularity. We release CR-LLM and code at https://github.com/Nianqi-Li/Concept-Reasoning-for-LLMs.