Shuai Xu
2025
Self-Guided Function Calling in Large Language Models via Stepwise Experience Recall
Sijia Cui
|
Aiyao He
|
Shuai Xu
|
Hongming Zhang
|
Yanna Wang
|
Qingyang Zhang
|
Yajing Wang
|
Bo Xu
Findings of the Association for Computational Linguistics: EMNLP 2025
Function calling enables large language models (LLMs) to interact with external systems by leveraging tools and APIs. When faced with multi-step tool usage, LLMs still struggle with tool selection, parameter generation, and tool-chain planning. Existing methods typically rely on manually designing task-specific demonstrations, or retrieving from a curated library. These approaches demand substantial expert effort and prompt engineering becomes increasingly complex and inefficient as tool diversity and task difficulty scale. To address these challenges, we propose a self-guided method, Stepwise ExperiencE Recall (SEER), which performs fine-grained, stepwise retrieval from a continually updated experience pool. Instead of relying on static or manually curated library, SEER incrementally augments the experience pool with past successful trajectories, enabling continuous expansion of the pool and improved model performance over time. Evaluated on the ToolQA benchmark, SEER achieves an average improvement of 6.1% on easy and 4.7% on hard questions. We further test SEER on 𝜏-bench, which includes two real-world domains. Powered by Qwen2.5-7B and Qwen2.5-72B models, SEER demonstrates substantial accuracy gains of 7.44% and 23.38%, respectively.
2024
Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion
Guanchu Wang
|
Yu-Neng Chuang
|
Ruixiang Tang
|
Shaochen Zhong
|
Jiayi Yuan
|
Hongye Jin
|
Zirui Liu
|
Vipin Chaudhary
|
Shuai Xu
|
James Caverlee
|
Xia Hu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Ensuring the security of released large language models (LLMs) poses a significant dilemma, as existing mechanisms either compromise ownership rights or raise data privacy concerns. To address this dilemma, we introduce TaylorMLP to protect the ownership of released LLMs and prevent their abuse. Specifically, TaylorMLP preserves the ownership of LLMs by transforming the weights of LLMs into parameters of Taylor-series. Instead of releasing the original weights, developers can release the Taylor-series parameters with users, thereby ensuring the security of LLMs. Moreover, TaylorMLP can prevent abuse of LLMs by adjusting the generation speed. It can induce low-speed token generation for the protected LLMs by increasing the terms in the Taylor-series. This intentional delay helps LLM developers prevent potential large-scale unauthorized uses of their models. Empirical experiments across five datasets and three LLM architectures demonstrate that TaylorMLP induces over increase in latency, producing the tokens precisely matched with original LLMs. Subsequent defensive experiments further confirm that TaylorMLP effectively prevents users from reconstructing the weight values based on downstream datasets.
Search
Fix author
Co-authors
- James Caverlee 1
- Vipin Chaudhary 1
- Yu-Neng Chuang 1
- Sijia Cui 1
- Aiyao He 1
- show all...