Shin-nosuke Ishikawa
2025
Idola Tribus of AI: Large Language Models tend to perceive order where none exists
Shin-nosuke Ishikawa
|
Masato Todo
|
Taiki Ogihara
|
Hirotsugu Ohba
Findings of the Association for Computational Linguistics: EMNLP 2025
We present a tendency of large language models (LLMs) to generate absurd patterns despite their clear inappropriateness in a simple task of identifying regularities in number series. Several approaches have been proposed to apply LLMs to complex real-world tasks, such as providing knowledge through retrieval-augmented generation and executing multi-step tasks using AI agent frameworks. However, these approaches rely on the logical consistency and self-coherence of LLMs, making it crucial to evaluate these aspects and consider potential countermeasures. To identify cases where LLMs fail to maintain logical consistency, we conducted an experiment in which LLMs were asked to explain the patterns in various integer sequences, ranging from arithmetic sequences to randomly generated integer series. While the models successfully identified correct patterns in arithmetic and geometric sequences, they frequently over-recognized patterns that were inconsistent with the given numbers when analyzing randomly generated series. This issue was observed even in multi-step reasoning models, including OpenAI o3, o4-mini, and Google Gemini 2.5 Flash Preview Thinking. This tendency to perceive non-existent patterns can be interpreted as the AI model equivalent of Idola Tribus and highlights potential limitations in their capability for applied tasks requiring logical reasoning, even when employing chain-of-thought reasoning mechanisms.
AI with Emotions: Exploring Emotional Expressions in Large Language Models
Shin-nosuke Ishikawa
|
Atsushi Yoshino
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities
The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of artificial intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states. We defined the emotional states using Russell’s Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs’ capability for emotional expression. This indicates the potential for LLM-based