Sheng Jin


2025

pdf bib
EMNLP: Educator-role Moral and Normative Large Language Models Profiling
Yilin Jiang | Mingzi Zhang | Sheng Jin | Zengyi Yu | Xiangjie Kong | Binghao Tu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 14 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.

pdf bib
Evolution in Simulation: AI-Agent School with Dual Memory for High-Fidelity Educational Dynamics
Sheng Jin | Haoming Wang | Zhiqi Gao | Yongbo Yang | Bao Chunjia | Chengliang Wang
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) based Agents are increasingly pivotal in simulating and understanding complex human systems and interactions. We propose the AI-Agent School (AAS) system, built around a self-evolving mechanism that leverages agents for simulating complex educational dynamics. Addressing the fragmented issues in teaching process modeling and the limitations of agents performance in simulating diverse educational participants, AAS constructs the Zero-Exp strategy, employs a continuous “experience-reflection-optimization” cycle, grounded in a dual memory base comprising experience and knowledge bases and incorporating short-term and long-term memory components. Through this mechanism, agents autonomously evolve via situated interactions within diverse simulated school scenarios. This evolution enables agents to more accurately model the nuanced, multi-faceted teacher-student engagements and underlying learning processes found in physical schools. Experiment confirms that AAS can effectively simulate intricate educational dynamics and is effective in fostering advanced agent cognitive abilities, providing a foundational stepping stone from the “Era of Experience” to the “Era of Simulation” by generating high-fidelity behavioral and interaction data.