Sean Lie
2025
MASSV: Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models
Mugilan Ganesan
|
Shane Segal
|
Ankur Aggarwal
|
Nish Sinnadurai
|
Sean Lie
|
Vithursan Thangarasa
Findings of the Association for Computational Linguistics: EMNLP 2025
Speculative decoding significantly accelerates language model inference by enabling a lightweight draft model to propose multiple tokens that a larger target model verifies simultaneously. However, applying this technique to vision-language models (VLMs) presents two fundamental challenges: small language models that could serve as efficient drafters lack the architectural components to process visual inputs, and their token predictions fail to match those of VLM target models that consider visual context. We introduce Multimodal Adaptation and Self-Data Distillation for Speculative Decoding of Vision-Language Models (MASSV), which transforms existing small language models into effective multimodal drafters through a two-phase approach. MASSV first connects the target VLM’s vision encoder to the draft model via a lightweight trainable projector, then applies self-distilled visual instruction tuning using responses generated by the target VLM to align token predictions. Comprehensive experiments across the Qwen2.5-VL and Gemma3 model families demonstrate that MASSV increases accepted length by up to 30% and delivers end-to-end inference speedups of up to 1.46x compared to conventional text-only drafting baselines on visually-grounded tasks.
2024
MediSwift: Efficient Sparse Pre-trained Biomedical Language Models
Vithursan Thangarasa
|
Mahmoud Salem
|
Shreyas Saxena
|
Chen-Yu Leong
|
Joel Hestness
|
Sean Lie
Findings of the Association for Computational Linguistics: ACL 2024
Large language models (LLMs) are typically trained on general source data forvarious domains, but a recent surge in domain-specific LLMs has shown theirpotential to outperform general-purpose models in domain-specific tasks (e.g.,biomedicine). Although domain-specific pre-training enhances efficiency andleads to smaller models, the computational costs of training these LLMs remainhigh, posing budgeting challenges. We introduce MediSwift, a suite of biomedicalLMs that leverage sparse pre-training on domain-specific biomedical text data.By inducing up to 75% weight sparsity during the pre-training phase, MediSwiftachieves a 2-2.5x reduction in training FLOPs. Notably, all sparse pre-trainingwas performed on the Cerebras CS-2 system, which is specifically designed torealize the acceleration benefits from unstructured weight sparsity, therebysignificantly enhancing the efficiency of the MediSwift models. Throughsubsequent dense fine-tuning and strategic soft prompting, MediSwift modelsoutperform existing LLMs up to 7B parameters on biomedical tasks, setting newbenchmarks w.r.t efficiency-accuracy on tasks such as PubMedQA. Our results showthat sparse pre-training, along with dense fine-tuning and soft prompting,offers an effective method for creating high-performing, computationallyefficient models in specialized domains.
Search
Fix author
Co-authors
- Vithursan Thangarasa 2
- Ankur Aggarwal 1
- Mugilan Ganesan 1
- Joel Hestness 1
- Chen-Yu Leong 1
- show all...