Retrieval-Augmented Generation (RAG) is an effective approach to enhance the factual accuracy of large language models (LLMs) by retrieving information from external databases, which are typically composed of diverse sources, to supplement the limited internal knowledge of LLMs. However, the standard RAG often risks retrieving incorrect information, as it relies solely on relevance between a query and a document, overlooking the heterogeneous reliability of these sources. To address this issue, we propose Reliability-Aware RAG (RA-RAG), a new multi-source RAG framework that estimates the reliability of sources and leverages this information to prioritize highly reliable and relevant documents, ensuring more robust and accurate response generation. Specifically, RA-RAG first estimates source reliability by cross-checking information across multiple sources. It then retrieves documents from the top-𝜅 reliable and relevant sources and aggregates their information using weighted majority voting (WMV), where the selective retrieval ensures scalability while not compromising the performance. Comprehensive experiments show that RA-RAG consistently outperforms baselines in scenarios with heterogeneous source reliability while scaling efficiently as the number of sources increases. Furthermore, we demonstrate the ability of RA-RAG to estimate real-world sources’ reliability, highlighting its practical applicability. Our code and data are available at RA-RAG.
In this paper, we propose ChronoBias, a novel benchmark for evaluating time-conditional group bias in the time-sensitive knowledge of large language models (LLMs).Our benchmark is constructed via a template-based semi-automated generation method, balancing the quality-quantity trade-off in existing benchmark curation approaches.For knowledge that changes over time, time-conditional group bias exhibits varying patterns across time intervals, evident in both the best- and worst-performing groups and in the bias metric itself.In addition to parametric knowledge bias–which influences group bias across all time intervals–we identify time-sensitivity bias as an additional factor after a model’s knowledge cutoff, accounting for much of the variation in time-conditional group bias over time.Since both biases are irreducible, retrieval-augmented generation (RAG) can be a promising approach, as it can address post-cutoff knowledge and better leverage pretraining knowledge that is underrepresented in the model parameters.While RAG improves both overall performance and group bias, we observe that the disparate patterns of time-conditional group bias still persist.Therefore, through extensive experiments with various model configurations, we illustrate how accurate and fair RAG-based LLMs should behave and provide actionable guidelines toward constructing such ideal models.
When applied to open-domain question answering, large language models (LLMs) frequently generate incorrect responses based on made-up facts, which are called hallucinations. Retrieval augmented generation (RAG) is a promising strategy to avoid hallucinations, but it does not provide guarantees on its correctness. To address this challenge, we propose the Trustworthy Retrieval Augmented Question Answering, or *TRAQ*, which provides the first end-to-end statistical correctness guarantee for RAG. TRAQ uses conformal prediction, a statistical technique for constructing prediction sets that are guaranteed to contain the semantically correct response with high probability. Additionally, TRAQ leverages Bayesian optimization to minimize the size of the constructed sets. In an extensive experimental evaluation, we demonstrate that TRAQ provides the desired correctness guarantee while reducing prediction set size by 16.2% on average compared to an ablation. The implementation is available: [https://github.com/shuoli90/TRAQ](https://github.com/shuoli90/TRAQ).