2025
pdf
bib
abs
ArabicWeb-Edu: Educational Quality Data for Arabic LLM Training
Majd Hawasly
|
Tasnim Mohiuddin
|
Hamdy Mubarak
|
Sabri Boughorbel
Proceedings of The Third Arabic Natural Language Processing Conference
The quality of training data plays a critical role in the performance of large language models (LLMs). This is especially true for low-resource languages where high-quality content is relatively scarce. Inspired by the success of FineWeb-Edu for English, we construct a native Arabic educational-quality dataset using similar methodological principles. We begin by sampling 1 million Arabic web documents from Common Crawl and labeling them into six quality classes (0–5) with Qwen-2.5-72B-Instruct model using a classification prompt adapted from FineWeb-Edu. These labeled examples are used to train a robust classifier capable of distinguishing educational content from general web text. We train a classification head on top of a multilingual 300M encoder model, then use this classifier to filter a large Arabic web corpus, discarding documents with low educational value. To evaluate the impact of this curation, we pretrain from scratch two bilingual English-Arabic 7B LLMs on 800 billion tokens using the filtered and unfiltered data and compare their performance across a suite of benchmarks. Our results show a significant improvement when using the filtered educational dataset, validating the effectiveness of quality filtering as a component in a balanced data mixture for Arabic LLM development. This work addresses the scarcity of high-quality Arabic training data and offers a scalable methodology for curating educational quality content in low-resource languages.
pdf
bib
abs
Beyond the Leaderboard: Understanding Performance Disparities in Large Language Models via Model Diffing
Sabri Boughorbel
|
Fahim Dalvi
|
Nadir Durrani
|
Majd Hawasly
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
As fine-tuning becomes the dominant paradigm for improving large language models (LLMs), understanding what changes during this process is increasingly important. Traditional benchmarking often fails to explain _why_ one model outperforms another. In this work, we use model diffing, a mechanistic interpretability approach, to analyze the specific capability differences between Gemma-2-9b-it and a SimPO-enhanced variant. Using crosscoders, we identify and categorize latent representations that differentiate the two models. We find that SimPO acquired latent concepts predominantly enhance safety mechanisms (+32.8%), multilingual capabilities (+43.8%), and instruction-following (+151.7%), while its additional training also reduces emphasis on model self-reference (-44.1%) and hallucination management (-68.5%). Our analysis shows that model diffing can yield fine-grained insights beyond leaderboard metrics, attributing performance gaps to concrete mechanistic capabilities. This approach offers a transparent and targeted framework for comparing LLMs.
2024
pdf
bib
abs
Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis
Sabri Boughorbel
|
Md Rizwan Parvez
|
Majd Hawasly
Proceedings of the Second Arabic Natural Language Processing Conference
Training LLMs in low resources languages usually utilizes machine translation (MT) data augmentation from English language. However, translation brings a number of challenges: there are large costs attached to translating and curating huge amounts of content with high-end machine translation solutions; the translated content carries over cultural biases; and if the translation is not faithful and accurate, the quality of the data degrades causing issues in the trained model. In this work, we investigate the role of translation and synthetic data in training language models. We translate TinyStories, a dataset of 2.2M short stories for 3-4 year old children, from English to Arabic using the open NLLB-3B MT model. We train a number of story generation models of size 1M-33M parameters using this data. We identify a number of quality and task-specific issues in the resulting models. To rectify these issues, we further pre-train the models with a small dataset of synthesized high-quality stories generated by a capable LLM in Arabic, representing 1% of the original training data. We show, using GPT-4 as a judge and dictionary learning analysis from mechanistic interpretability, that the suggested approach is a practical means to resolve some of the translation pitfalls. We illustrate the improvement through case studies of linguistic and cultural bias issues.
pdf
bib
abs
LAraBench: Benchmarking Arabic AI with Large Language Models
Ahmed Abdelali
|
Hamdy Mubarak
|
Shammur Chowdhury
|
Maram Hasanain
|
Basel Mousi
|
Sabri Boughorbel
|
Samir Abdaljalil
|
Yassine El Kheir
|
Daniel Izham
|
Fahim Dalvi
|
Majd Hawasly
|
Nizi Nazar
|
Youssef Elshahawy
|
Ahmed Ali
|
Nadir Durrani
|
Natasa Milic-Frayling
|
Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.
pdf
bib
abs
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
Fahim Dalvi
|
Maram Hasanain
|
Sabri Boughorbel
|
Basel Mousi
|
Samir Abdaljalil
|
Nizi Nazar
|
Ahmed Abdelali
|
Shammur Absar Chowdhury
|
Hamdy Mubarak
|
Ahmed Ali
|
Majd Hawasly
|
Nadir Durrani
|
Firoj Alam
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework, which can be seamlessly customized to evaluate LLMs for any NLP task, regardless of language. The framework features generic dataset loaders, several model providers, and pre-implements most standard evaluation metrics. It supports in-context learning with zero- and few-shot settings. A specific dataset and task can be evaluated for a given LLM in less than 20 lines of code while allowing full flexibility to extend the framework for custom datasets, models, or tasks. The framework has been tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We open-sourced LLMeBench for the community (https://github.com/qcri/LLMeBench/) and a video demonstrating the framework is available online (https://youtu.be/9cC2m_abk3A).
pdf
bib
abs
LLMs for Low Resource Languages in Multilingual, Multimodal and Dialectal Settings
Firoj Alam
|
Shammur Absar Chowdhury
|
Sabri Boughorbel
|
Maram Hasanain
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts
The recent breakthroughs in Artificial Intelligence (AI) can be attributed to the remarkable performance of Large Language Models (LLMs) across a spectrum of research areas (e.g., machine translation, question-answering, automatic speech recognition, text-to-speech generation) and application domains (e.g., business, law, healthcare, education, and psychology). The success of these LLMs largely de- pends on specific training techniques, most notably instruction tuning, RLHF, and subsequent prompting to achieve the desired output. As the development of such LLMs continues to increase in both closed and open settings, evaluation has become crucial for understanding their generalization capabilities across different tasks, modalities, languages, and dialects. This evaluation process is tightly coupled with prompting, which plays a key role in obtain- ing better outputs. There has been attempts to evaluate such models focusing on diverse tasks, languages, and dialects, which suggests that the capabilities of LLMs are still limited to medium-to-low-resource languages due to the lack of representative datasets. The tutorial offers an overview of this emerging research area. We explore the capabilities of LLMs in terms of their performance, zero- and few-shot settings, fine-tuning, instructions tuning, and close vs. open models with a special emphasis on low-resource settings. In addition to LLMs for standard NLP tasks, we will focus on speech and multimodality.
2023
pdf
bib
abs
Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic
Sabri Boughorbel
|
Majd Hawasly
Proceedings of ArabicNLP 2023
While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark.