2025
pdf
bib
abs
FG-PRM: Fine-grained Hallucination Detection and Mitigation in Language Model Mathematical Reasoning
Ruosen Li
|
Ziming Luo
|
Xinya Du
Findings of the Association for Computational Linguistics: EMNLP 2025
Hallucinations in large language models (LLMs) pose significant challenges in tasks requiring complex multi-step reasoning, such as mathematical problem-solving. Existing approaches primarily detect the presence of hallucinations but lack a nuanced understanding of their types and manifestations. In this paper, we first introduce a comprehensive taxonomy that categorizes the common hallucinations in mathematical reasoning tasks into six types. We then propose FG-PRM (Fine-Grained Process Reward Model), an augmented model designed to detect and mitigate hallucinations in a fine-grained, step-level manner. To address the limitations of manually labeling training data, we propose an automated method for generating fine-grained hallucination data using LLMs. Our FG-PRM demonstrates superior performance across two key tasks: 1) Fine-grained hallucination detection: classifying hallucination types for each reasoning step; and 2) Verification: ranking multiple LLM-generated outputs to select the most accurate solution. Our experiments show that FG-PRM excels in fine-grained hallucination detection and substantially boosts the performance of LLMs on GSM8K and MATH benchmarks. These results highlight the benefits of fine-grained supervision in enhancing the reliability and interpretability of LLM reasoning processes. Codes and datasets are available at: https://github.com/du-nlp-lab/FG-PRM.
2024
pdf
bib
abs
FaithScore: Fine-grained Evaluations of Hallucinations in Large Vision-Language Models
Liqiang Jing
|
Ruosen Li
|
Yunmo Chen
|
Xinya Du
Findings of the Association for Computational Linguistics: EMNLP 2024
We introduce FaithScore (Faithfulness to Atomic Image Facts Score), a reference-free and fine-grained evaluation metric that measures the faithfulness of the generated free-form answers from large vision-language models (LVLMs). The FaithScore evaluation first identifies sub-sentences containing descriptive statements that need to be verified, then extracts a comprehensive list of atomic facts from these sub-sentences, and finally conducts consistency verification between fine-grained atomic facts and the input image. Meta-evaluation demonstrates that our metric highly correlates with human judgments of faithfulness. We collect two benchmark datasets (i.e. LLaVA-1k and MSCOCO-Cap) for evaluating LVLMs instruction-following hallucinations. We measure hallucinations in state-of-the-art LVLMs with FaithScore on the datasets. Results reveal that current systems are prone to generate hallucinated content unfaithful to the image, which leaves room for future improvements. We hope our metric FaithScore can help evaluate future LVLMs in terms of faithfulness and provide insightful advice for enhancing LVLMs’ faithfulness.
2023
pdf
bib
abs
Leveraging Structured Information for Explainable Multi-hop Question Answering and Reasoning
Ruosen Li
|
Xinya Du
Findings of the Association for Computational Linguistics: EMNLP 2023
Neural models, including large language models (LLMs), achieve superior performance on multi-hop question-answering. To elicit reasoning capabilities from LLMs, recent works propose using the chain-of-thought (CoT) mechanism to generate both the reasoning chain and the answer, which enhances the model’s capabilities in conducting multi-hop reasoning. However, several challenges still remain: such as struggling with inaccurate reasoning, hallucinations, and lack of interpretability. On the other hand, information extraction (IE) identifies entities, relations, and events grounded to the text. The extracted structured information can be easily interpreted by humans and machines (Grishman, 2019). In this work, we investigate constructing and leveraging extracted semantic structures (graphs) for multi-hop question answering, especially the reasoning process. Empirical results and human evaluations show that our framework: generates more faithful reasoning chains and substantially improves the QA performance on two benchmark datasets. Moreover, the extracted structures themselves naturally provide grounded explanations that are preferred by humans, as compared to the generated reasoning chains and saliency-based explanations.
2020
pdf
bib
abs
Intent Segmentation of User Queries Via Discourse Parsing
Vicente Ivan Sanchez Carmona
|
Yibing Yang
|
Ziyue Wen
|
Ruosen Li
|
Xiaohua Wang
|
Changjian Hu
Proceedings of the Second International Workshop of Discourse Processing
In this paper, we explore a new approach based on discourse analysis for the task of intent segmentation. Our target texts are user queries from a real-world chatbot. Our results show the feasibility of our approach with an F1-score of 82.97 points, and some advantages and disadvantages compared to two machine learning baselines: BERT and LSTM+CRF.