Rana Shahroz


2025

pdf bib
Agents Under Siege: Breaking Pragmatic Multi-Agent LLM Systems with Optimized Prompt Attacks
Rana Shahroz | Zhen Tan | Sukwon Yun | Charles Fleming | Tianlong Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most discussions about Large Language Model (LLM) safety have focused on single-agent settings but multi-agent LLM systems now create novel adversarial risks because their behavior depends on communication between agents and decentralized reasoning. In this work, we innovatively focus on attacking pragmatic systems that have constrains such as limited token bandwidth, latency between message delivery, and defense mechanisms. We design a permutation-invariant adversarial attack that optimizes prompt distribution across latency and bandwidth-constraint network topologies to bypass distributed safety mechanisms within the system. Formulating the attack path as a problem of maximum-flow minimum-cost, coupled with the novel Permutation-Invariant Evasion Loss (PIEL), we leverage graph-based optimization to maximize attack success rate while minimizing detection risk. Evaluating across models including Llama, Mistral, Gemma, DeepSeek and other variants on various datasets like JailBreakBench and AdversarialBench, our method outperforms conventional attacks by up to , exposing critical vulnerabilities in multi-agent systems. Moreover, we demonstrate that existing defenses, including variants of Llama-Guard and PromptGuard, fail to prohibit our attack, emphasizing the urgent need for multi-agent specific safety mechanisms.

pdf bib
ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Rana Shahroz | Dongwen Tang | Pingzhi Li | Kai Wang | Tianlong Chen
Findings of the Association for Computational Linguistics: EMNLP 2025

Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving (i.e, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce ORAL, a novel conditional recurrent diffusion framework that addresses these challenges. ORAL incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that ORAL generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.