The unlearning method aims at effectively removing harmful, sensitive, or outdated knowledge without costly retraining the model. However, existing methods suffer from two critical limitations: (1) collateral forgetting, where erasing target data inadvertently removes related but desirable knowledge, and (2) generality forgetting, where aggressive unlearning degrades the model’s general capabilities. To address these challenges, we propose DirectiOn Guide unlEarning (DOGE), a novel method that enables precise knowledge erasure by identifying and leveraging a targeted “unlearning direction” in the model’s parameter space. DOGE first extracts this direction through differential analysis of representations for forgotten and retained samples, pinpointing the exact subspace associated with unwanted knowledge. It then selectively applies updates along this direction, ensuring minimal interference with retained information and general model performance. Experiments across multiple benchmarks demonstrate that Doge achieves state-of-the-art unlearning precision while preserving both related knowledge and general capabilities.
Understanding neural models is a major topic of interest in the deep learning community. In this paper, we propose to interpret a general neural model comparatively. Specifically, we study the sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks–machine translation and dialogue response generation–as they both use the seq2seq model. We investigate how the two tasks are different and how their task difference results in major differences in the behaviors of the resulting translation and dialogue generation systems. This study allows us to make several interesting observations and gain valuable insights, which can be used to help develop better translation and dialogue generation models. To our knowledge, no such comparative study has been done so far.
Previous research on dialogue systems generally focuses on the conversation between two participants, yet multi-party conversations which involve more than two participants within one session bring up a more complicated but realistic scenario. In real multi- party conversations, we can observe who is speaking, but the addressee information is not always explicit. In this paper, we aim to tackle the challenge of identifying all the miss- ing addressees in a conversation session. To this end, we introduce a novel who-to-whom (W2W) model which models users and utterances in the session jointly in an interactive way. We conduct experiments on the benchmark Ubuntu Multi-Party Conversation Corpus and the experimental results demonstrate that our model outperforms baselines with consistent improvements.