Quan Chen


2025

pdf bib
Improving Preference Alignment of LLM with Inference-Free Self-Refinement
Fukun Ma | Kaibin Tian | Jieting Xue | Xiaoyi Wang | Ye Ma | Quan Chen | Peng Jiang | Lijie Wen
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) develop the in-context learning capability through pretraining and instruction tuning, enabling task adaptation without parameter updates. Self-refinement is a manifestation of this capability, which allows LLMs to iteratively refine the output using self-generated feedback. However, empirical observations reveal Inference-Free Self-Refinement (IFSR) in preference alignment: LLMs generate preference-improved output via fixed instructions, requiring no specific feedback, even no initial responses. There are two key components of the IFSR in preference alignment. The refining instruction is a fixed instruction that constrains the output distribution from a preference-semantic perspective. During training, it facilitates joint learning of preference-related semantic representations and data distribution alignment. The pseudo reference response is constructed from paired preference data and serves as a demonstration to guide the output distribution. It mitigates off-policy distributional bias while enhancing token-level preference learning in training. Experiments across multiple datasets demonstrate that incorporating IFSR into preference alignment yields performance improvement over 10%. Further ablation studies reveal additional characteristics and potential principles of IFSR.

2020

pdf bib
How Far Does BERT Look At: Distance-based Clustering and Analysis of BERT’s Attention
Yue Guan | Jingwen Leng | Chao Li | Quan Chen | Minyi Guo
Proceedings of the 28th International Conference on Computational Linguistics

Recent research on the multi-head attention mechanism, especially that in pre-trained models such as BERT, has shown us heuristics and clues in analyzing various aspects of the mechanism. As most of the research focus on probing tasks or hidden states, previous works have found some primitive patterns of attention head behavior by heuristic analytical methods, but a more systematic analysis specific on the attention patterns still remains primitive. In this work, we clearly cluster the attention heatmaps into significantly different patterns through unsupervised clustering on top of a set of proposed features, which corroborates with previous observations. We further study their corresponding functions through analytical study. In addition, our proposed features can be used to explain and calibrate different attention heads in Transformer models.