Qiyue Yin


2025

pdf bib
Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning
Zhaohui Yang | Chenghua He | Xiaowen Shi | Shihong Deng | Linjing Li | Qiyue Yin | Daxin Jiang
Findings of the Association for Computational Linguistics: EMNLP 2025

Many studies focus on data annotation techniques for training effective PRMs. However, current methods encounter a significant issue when applied to long CoT reasoning processes: they tend to focus solely on the first incorrect step and all preceding steps, assuming that all subsequent steps are incorrect. These methods overlook the unique self-correction and reflection mechanisms inherent in long CoT, where correct reasoning steps may still occur after initial reasoning mistakes. To address this issue, we propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process. Given that under the reflection pattern, correct and incorrect steps often alternate, we introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs’ ability to identify both effective self-correction behaviors and reasoning based on erroneous steps. Leveraging an LLM-based judger for annotation, we collect 1.7 million data samples to train a 7B PRM and evaluate it at both solution and step levels. Experimental results demonstrate that compared to existing open-source PRMs and PRMs trained on open-source datasets, our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores. Compared to widely used MC-based annotation methods, our annotation approach not only achieves higher data efficiency but also delivers superior performance. Detailed analysis is also conducted to demonstrate the stability and generalizability of our method.

2021

pdf bib
Counter-Contrastive Learning for Language GANs
Yekun Chai | Haidong Zhang | Qiyue Yin | Junge Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Generative Adversarial Networks (GANs) have achieved great success in image synthesis, but have proven to be difficult to generate natural language. Challenges arise from the uninformative learning signals passed from the discriminator. In other words, the poor learning signals limit the learning capacity for generating languages with rich structures and semantics. In this paper, we propose to adopt the counter-contrastive learning (CCL) method to support the generator’s training in language GANs. In contrast to standard GANs that adopt a simple binary classifier to discriminate whether a sample is real or fake, we employ a counter-contrastive learning signal that advances the training of language synthesizers by (1) pulling the language representations of generated and real samples together and (2) pushing apart representations of real samples to compete with the discriminator and thus prevent the discriminator from being overtrained. We evaluate our method on both synthetic and real benchmarks and yield competitive performance compared to previous GANs for adversarial sequence generation.