Qingchao Kong


2025

pdf bib
Perspective-driven Preference Optimization with Entropy Maximization for Diverse Argument Generation
Yilin Cao | Ruike Zhang | Penghui Wei | Qingchao Kong | Wenji Mao
Findings of the Association for Computational Linguistics: EMNLP 2025

In subjective natural language generation tasks, generating diverse perspectives is essential for fostering balanced discourse and mitigating bias. Argument generation with diverse perspectives plays a vital role in advancing the understanding of controversial claims. Despite the strong generative capabilities of large language models (LLMs), the diversity of perspectives remains insufficiently explored within argument generation task. Moreover, there remains a significant research gap in developing methods that explicitly generate multi-perspective arguments under the quality control of claim-stance alignment constraints. In this paper, we propose POEM, a Perspective-aware Preference Optimization with Entropy Maximization framework for diverse argument generation. It enhances perspective diversity through preference optimization based on the constructed preference dataset via perspective mining and diversity measuring. It further introduces entropy maximization to promote perspective diversity by encouraging dispersed semantic representations among the generated arguments. Experimental results on claim-stance argument generation benchmarks show that POEM is capable of generating diverse arguments while maintaining comparable performances in claim and stance controllability as well as text quality compared to the state-of-the-art baselines and human evaluation.

2024

pdf bib
Dual Complex Number Knowledge Graph Embeddings
Yao Dong | Qingchao Kong | Lei Wang | Yin Luo
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Knowledge graph embedding, which aims to learn representations of entities and relations in large scale knowledge graphs, plays a crucial part in various downstream applications. The performance of knowledge graph embedding models mainly depends on the ability of modeling relation patterns, such as symmetry/antisymmetry, inversion and composition (commutative composition and non-commutative composition). Most existing methods fail in modeling the non-commutative composition patterns. Several methods support this kind of pattern by modeling in quaternion space or dihedral group. However, extending to such sophisticated spaces leads to a substantial increase in the amount of parameters, which greatly reduces the parameter efficiency. In this paper, we propose a new knowledge graph embedding method called dual complex number knowledge graph embeddings (DCNE), which maps entities to the dual complex number space, and represents relations as rotations in 2D space via dual complex number multiplication. The non-commutativity of the dual complex number multiplication empowers DCNE to model the non-commutative composition patterns. In the meantime, modeling relations as rotations in 2D space can effectively improve the parameter efficiency. Extensive experiments on multiple benchmark knowledge graphs empirically show that DCNE achieves significant performance in link prediction and path query answering.