Language model agents excel in long-session planning and reasoning, but existing benchmarks primarily focus on goal-oriented tasks with explicit objectives, neglecting creative adaptation in unfamiliar environments. To address this, we introduce EscapeBench—a benchmark suite of room escape game environments designed to challenge agents with creative reasoning, unconventional tool use, and iterative problem-solving to uncover implicit goals. Our results show that current LM models, despite employing working memory and Chain-of-Thought reasoning, achieve only 15% average progress without hints, highlighting their limitations in creativity. To bridge this gap, we propose EscapeAgent, a framework designed to enhance creative reasoning through Foresight (innovative tool use) and Reflection (identifying unsolved tasks). Experiments show that EscapeAgent can execute action chains over 1,000 steps while maintaining logical coherence. It navigates and completes games with up to 40% fewer steps and hints, performs robustly across difficulty levels, and achieves higher action success rates with more efficient and innovative puzzle-solving strategies.
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce **SafeScientist**, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose **SciSafetyBench** , a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist.**Warning**: this paper contains example data that may be offensive or harmful.
Large language models (LLMs) exhibit exceptional capabilities across various tasks but also pose risks by generating harmful content. Existing safety mechanisms, while improving model safety, often lead to overly cautious behavior and fail to fully leverage LLMs’ internal cognitive processes. Inspired by humans’ reflective thinking capability, we first show that LLMs can similarly perform internal assessments about safety in their internal states. Building on this insight, we propose **SafeSwitch**, a dynamic framework that regulates unsafe outputs by utilizing the prober-based internal state monitor that actively detects harmful intentions, and activates a safety head that leads to safer and more conservative responses only when necessary. SafeSwitch reduces harmful outputs by approximately 80% on harmful queries while maintaining strong utility, reaching a Pareto optimal among several methods. Our method is also advantageous over traditional methods in offering more informative, context-aware refusals, and achieves these benefits while only tuning less than 6% of the original parameters. SafeSwitch demonstrates large language models’ capacity for self-awareness and reflection regarding safety, offering a promising approach to more nuanced and effective safety controls.
In high-stakes domains such as healthcare and finance, effective decision-making demands not just accurate outcomes but transparent and explainable reasoning. However, current language models often lack the structured deliberation needed for such tasks, instead generating decisions and justifications in a disconnected, post-hoc manner. To address this, we propose DecisionFlow, a novel decision modeling framework that guides models to reason over structured representations of actions, attributes, and constraints. Rather than predicting answers directly from prompts, DecisionFlow builds a semantically grounded decision space and infers a latent utility function to evaluate trade-offs in a transparent, utility-driven manner. This process produces decisions tightly coupled with interpretable rationales reflecting the model’s reasoning. Empirical results on two high-stakes benchmarks show that DecisionFlow not only achieves up to 30% accuracy gains over strong prompting baselines but also enhances alignment in outcomes. Our work is a critical step toward integrating symbolic reasoning with LLMs, enabling more accountable, explainable, and reliable LLM decision support systems. Code and data are at https://github.com/xiusic/DecisionFlow.