Neil Zhenqiang Gong


2025

pdf bib
WebInject: Prompt Injection Attack to Web Agents
Xilong Wang | John Bloch | Zedian Shao | Yuepeng Hu | Shuyan Zhou | Neil Zhenqiang Gong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multi-modal large language model (MLLM)-based web agents interact with webpage environments by generating actions based on screenshots of the webpages. In this work, we propose WebInject, a prompt injection attack that manipulates the webpage environment to induce a web agent to perform an attacker-specified action. Our attack adds a perturbation to the raw pixel values of the rendered webpage. After these perturbed pixels are mapped into a screenshot, the perturbation induces the web agent to perform the attacker-specified action. We formulate the task of finding the perturbation as an optimization problem. A key challenge in solving this problem is that the mapping between raw pixel values and screenshot is non-differentiable, making it difficult to backpropagate gradients to the perturbation. To overcome this, we train a neural network to approximate the mapping and apply projected gradient descent to solve the reformulated optimization problem. Extensive evaluation on multiple datasets shows that WebInject is highly effective and significantly outperforms baselines.

2024

pdf bib
ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods
Roy Xie | Junlin Wang | Ruomin Huang | Minxing Zhang | Rong Ge | Jian Pei | Neil Zhenqiang Gong | Bhuwan Dhingra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The rapid scaling of large language models (LLMs) has raised concerns about the transparency and fair use of the data used in their pretraining. Detecting such content is challenging due to the scale of the data and limited exposure of each instance during training. We propose ReCaLL (Relative Conditional Log-Likelihood), a novel membership inference attack (MIA) to detect LLMs’ pretraining data by leveraging their conditional language modeling capabilities. ReCaLL examines the relative change in conditional log-likelihoods when prefixing target data points with non-member context. Our empirical findings show that conditioning member data on non-member prefixes induces a larger decrease in log-likelihood compared to non-member data. We conduct comprehensive experiments and show that ReCaLL achieves state-of-the-art performance on the WikiMIA dataset, even with random and synthetic prefixes, and can be further improved using an ensemble approach. Moreover, we conduct an in-depth analysis of LLMs’ behavior with different membership contexts, providing insights into how LLMs leverage membership information for effective inference at both the sequence and token level.