Monica Agrawal


2025

pdf bib
“What’s Up, Doc?”: Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
Akshay Paruchuri | Maryam Aziz | Rohit Vartak | Ayman Ali | Best Uchehara | Xin Liu | Ishan Chatterjee | Monica Agrawal
Findings of the Association for Computational Linguistics: EMNLP 2025

People are increasingly seeking healthcare information from large language models (LLMs) via interactive chatbots, yet the nature and inherent risks of these conversations remain largely unexplored. In this paper, we filter large-scale conversational AI datasets to achieve HealthChat-11K, a curated dataset of 11K real-world conversations composed of 25K user messages. We use HealthChat-11K and a clinician-driven taxonomy for how users interact with LLMs when seeking healthcare information in order to systematically study user interactions across 21 distinct health specialties. Our analysis reveals insights into the nature of how and why users seek health information, such as common interactions, instances of incomplete context, affective behaviors, and interactions (e.g., leading questions) that can induce sycophancy, underscoring the need for improvements in the healthcare support capabilities of LLMs deployed as conversational AI. We release code and artifacts to retrieve our analyses and combine them into a curated dataset for further research.

2022

pdf bib
Large language models are few-shot clinical information extractors
Monica Agrawal | Stefan Hegselmann | Hunter Lang | Yoon Kim | David Sontag
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A long-running goal of the clinical NLP community is the extraction of important variables trapped in clinical notes. However, roadblocks have included dataset shift from the general domain and a lack of public clinical corpora and annotations. In this work, we show that large language models, such as InstructGPT (Ouyang et al., 2022), perform well at zero- and few-shot information extraction from clinical text despite not being trained specifically for the clinical domain. Whereas text classification and generation performance have already been studied extensively in such models, here we additionally demonstrate how to leverage them to tackle a diverse set of NLP tasks which require more structured outputs, including span identification, token-level sequence classification, and relation extraction. Further, due to the dearth of available data to evaluate these systems, we introduce new datasets for benchmarking few-shot clinical information extraction based on a manual re-annotation of the CASI dataset (Moon et al., 2014) for new tasks. On the clinical extraction tasks we studied, the GPT-3 systems significantly outperform existing zero- and few-shot baselines.