Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment. To help overcome these limitations, we introduce iVISPAR, an interactive multimodal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents. iVISPAR is based on a variant of the sliding tile puzzle—a classic problem that demands logical planning, spatial awareness, and multi-step reasoning. The benchmark supports visual 3D, 2D, and text-based input modalities, enabling comprehensive assessments of VLMs’ planning and reasoning skills. We evaluate a broad suite of state-of-the-art open-source and closed-source VLMs, comparing their performance while also providing optimal path solutions and a human baseline to assess the task’s complexity and feasibility for humans. Results indicate that while VLMs perform better on 2D tasks compared to 3D or text-based settings, they struggle with complex spatial configurations and consistently fall short of human performance, illustrating the persistent challenge of visual alignment. This underscores critical gaps in current VLM capabilities, highlighting their limitations in achieving human-level cognition. Project website: https://microcosm.ai/ivispar.
In this work, we introduce SPLICE, a human-curated benchmark derived from the COIN instructional video dataset, designed to probe event-based reasoning across multiple dimensions: temporal, causal, spatial, contextual, and general knowledge. SPLICE includes 3,381 human-filtered videos spanning 12 categories and 180 sub-categories, such as sports, engineering, and housework. These videos are segmented into a total of 11,423 event clips. We evaluate both human participants and state-of-the-art vision-language models (VLMs) on the task of rearranging these clips into coherent event sequences to assess visual reasoning capabilities. Results reveal a significant gap: VLMs struggle to match human performance. While human-annotated textual descriptions improve model accuracy, they do not affect human performance, suggesting that models rely more on language priors than on visual understanding. Even with annotations, VLMs fall short of human-level reasoning, underscoring persistent challenges in visual reasoning. A deeper analysis across sub-categories shows that VLMs perform relatively better on videos where temporal and causal reasoning are dominant, compared to those where contextual and spatial reasoning are dominant. They also perform better on everyday tasks than on specialized ones.
Word sense disambiguation (WSD) is a key task in natural language processing and lexical semantics. Pre-trained language models with contextualized word embeddings have significantly improved performance in regular WSD tasks. However, these models still struggle with recognizing semantic boundaries and often misclassify homonyms in adversarial context. Therefore, we propose FOOL: FOur-fold Obscure Lexical, a new coarse-grained WSD dataset, which includes four different test sets designed to assess the robustness of language models in WSD tasks. Two sets feature typical WSD scenarios, while the other two include sentences with opposing contexts to challenge the models further.We tested two types of models on the proposed dataset: models with encoders, such as the BERT and T5 series of varying sizes by probing their embeddings, and state-of-the-art large decoder models like GPT-4o and the LlaMA3 family, using zero shot prompting. Across different state-of-the-art language models, we observed a decrease in performance in the latter two sets compared to the first two, with some models being affected more than others. We show interesting findings where small models like T5-large and BERT-large performed better than GPT-4o on Set 3 of the dataset. This indicates that, despite excelling in regular WSD tasks, these models still struggle to correctly disambiguate homonyms in artificial (Set 3) or realistic adversarial contexts (Set 4).