The evolution of speech technology has been spurred by the rapid increase in dataset sizes. Traditional speech models generally depend on a large amount of labeled training data, which is scarce for low-resource languages. This paper presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recognition corpus. It is designed for low-resource languages and does not rely on paired speech and text data. GigaSpeech 2 comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered from unlabeled YouTube videos. We also introduce an automated pipeline for data crawling, transcription, and label refinement. Specifically, this pipeline involves Whisper for initial transcription, MMS for forced alignment, and multi-dimensional filtering for data quality assurance. A modified Noisy Student Training is developed to further refine flawed pseudo labels iteratively, thereby enhancing model performance. Experimental results on our manually transcribed evaluation set and two public test sets from Common Voice and FLEURS confirm our corpus’s high quality and broad applicability. Notably, ASR models trained on GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese on our challenging and realistic YouTube test set by 25% to 40% compared to Whisper large-v3, with merely 10% model parameters. Furthermore, our ASR models trained on GigaSpeech 2 yield superior performance compared to commercial services. We hope that our newly introduced corpus and pipeline will open a new avenue for low-resource speech recognition and significantly facilitate research in this area.
With the rise of Speech Large Language Models (SpeechLLMs), two dominant approaches have emerged for speech processing: discrete tokens and continuous features. Each approach has demonstrated strong capabilities in audio-related processing tasks. However, the performance gap between these two paradigms has not been thoroughly explored. To address this gap, we present a fair comparison of self-supervised learning (SSL)-based discrete and continuous features under the same experimental settings. We evaluate their performance across six spoken language understanding-related tasks using both small and large-scale LLMs (Qwen1.5-0.5B and Llama3.1-8B). We further conduct in-depth analyses, including efficient comparison, SSL layer analysis, LLM layer analysis, and robustness comparison. Our findings reveal that continuous features generally outperform discrete tokens in various tasks. Each speech processing method exhibits distinct characteristics and patterns in how it learns and processes speech information. We hope our results will provide valuable insights to advance spoken language understanding in SpeechLLMs.