The increasing size and complexity of large language models (LLMs) raise concerns about their ability to “cheat” on standard Question Answering (QA) benchmarks by memorizing task-specific data. This undermines the validity of benchmark evaluations, as they no longer reflect genuine model capabilities but instead the effects of data leakage. While existing methods detect such leakage, they fail to address the long-term challenge of mitigating it. In this paper, we introduce LastingBench, a novel approach to reinforce and safeguard existing benchmarks against knowledge leakage. Our method involves identifying leakage points through perturbation-based detection, followed by counterfactual rewriting to disrupt memorization while preserving the benchmark’s original evaluative intent. We demonstrate that our approach significantly reduces memorization effects in long-context QA benchmarks, providing a more accurate assessment of model reasoning and generalization abilities. Our experiments show that LastingBench not only uncovers substantial leakage in benchmarks like HotpotQA but also yields a more reliable evaluation of state-of-the-art models, ensuring that benchmarks remain effective and resilient over time.
Effective unimodal representation and complementary crossmodal representation fusion are both important in multimodal representation learning. Prior works often modulate one modal feature to another straightforwardly and thus, underutilizing both unimodal and crossmodal representation refinements, which incurs a bottleneck of performance improvement. In this paper, Unimodal and Crossmodal Refinement Network (UCRN) is proposed to enhance both unimodal and crossmodal representations. Specifically, to improve unimodal representations, a unimodal refinement module is designed to refine modality-specific learning via iteratively updating the distribution with transformer-based attention layers. Self-quality improvement layers are followed to generate the desired weighted representations progressively. Subsequently, those unimodal representations are projected into a common latent space, regularized by a multimodal Jensen-Shannon divergence loss for better crossmodal refinement. Lastly, a crossmodal refinement module is employed to integrate all information. By hierarchical explorations on unimodal, bimodal, and trimodal interactions, UCRN is highly robust against missing modality and noisy data. Experimental results on MOSI and MOSEI datasets illustrated that the proposed UCRN outperforms recent state-of-the-art techniques and its robustness is highly preferred in real multimodal sequence fusion scenarios. Codes will be shared publicly.
In this paper, we perform convolutional neural networks (CNN) to learn the joint representations of question-answer pairs first, then use the joint representations as the inputs of the long short-term memory (LSTM) with attention to learn the answer sequence of a question for labeling the matching quality of each answer. We also incorporating external knowledge by training Word2Vec on Flashcards data, thus we get more compact embedding. Experimental results show that our method achieves better or comparable performance compared with the baseline system. The proposed approach achieves the accuracy of 0.39, 0.42 in English valid set, test set, respectively.