Massimo Rizzoli


2025

pdf bib
CIVET: Systematic Evaluation of Understanding in VLMs
Massimo Rizzoli | Simone Alghisi | Olha Khomyn | Gabriel Roccabruna | Seyed Mahed Mousavi | Giuseppe Riccardi
Findings of the Association for Computational Linguistics: EMNLP 2025

While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systemati**C** evaluat**I**on **V**ia controll**E**d s**T**imuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs’ understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.

2024

pdf bib
Will LLMs Replace the Encoder-Only Models in Temporal Relation Classification?
Gabriel Roccabruna | Massimo Rizzoli | Giuseppe Riccardi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The automatic detection of temporal relations among events has been mainly investigated with encoder-only models such as RoBERTa. Large Language Models (LLM) have recently shown promising performance in temporal reasoning tasks such as temporal question answering. Nevertheless, recent studies have tested the LLMs’ performance in detecting temporal relations of closed-source models only, limiting the interpretability of those results. In this work, we investigate LLMs’ performance and decision process in the Temporal Relation Classification task. First, we assess the performance of seven open and closed-sourced LLMs experimenting with in-context learning and lightweight fine-tuning approaches. Results show that LLMs with in-context learning significantly underperform smaller encoder-only models based on RoBERTa. Then, we delve into the possible reasons for this gap by applying explainable methods. The outcome suggests a limitation of LLMs in this task due to their autoregressive nature, which causes them to focus only on the last part of the sequence. Additionally, we evaluate the word embeddings of these two models to better understand their pre-training differences. The code and the fine-tuned models can be found respectively on GitHub.

pdf bib
Should We Fine-Tune or RAG? Evaluating Different Techniques to Adapt LLMs for Dialogue
Simone Alghisi | Massimo Rizzoli | Gabriel Roccabruna | Seyed Mahed Mousavi | Giuseppe Riccardi
Proceedings of the 17th International Natural Language Generation Conference

We study the limitations of Large Language Models (LLMs) for the task of response generation in human-machine dialogue. Several techniques have been proposed in the literature for different dialogue types (e.g., Open-Domain). However, the evaluations of these techniques have been limited in terms of base LLMs, dialogue types and evaluation metrics. In this work, we extensively analyze different LLM adaptation techniques when applied to different dialogue types. We have selected two base LLMs, Llama-2 and Mistral, and four dialogue types Open-Domain, Knowledge-Grounded, Task-Oriented, and Question Answering. We evaluate the performance of in-context learning and fine-tuning techniques across datasets selected for each dialogue type. We assess the impact of incorporating external knowledge to ground the generation in both scenarios of Retrieval-Augmented Generation (RAG) and gold knowledge. We adopt consistent evaluation and explainability criteria for automatic metrics and human evaluation protocols. Our analysis shows that there is no universal best-technique for adapting large language models as the efficacy of each technique depends on both the base LLM and the specific type of dialogue. Last but not least, the assessment of the best adaptation technique should include human evaluation to avoid false expectations and outcomes derived from automatic metrics.