Marek Strong


2025

pdf bib
TSVer: A Benchmark for Fact Verification Against Time-Series Evidence
Marek Strong | Andreas Vlachos
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Reasoning over temporal and numerical data, such as time series, is a crucial aspect of fact-checking. While many systems have recently been developed to handle this form of evidence, their evaluation remains limited by existing datasets, which often lack structured evidence, provide insufficient justifications for verdicts, or rely on synthetic claims. In this paper, we introduce TSVer, a new benchmark dataset for fact verification focusing on temporal and numerical reasoning with time-series evidence. TSVer contains 287 real-world claims sourced from 38 fact-checking organizations and a curated database of 400 time series covering diverse domains.Each claim is annotated with time frames across all pertinent time series, along with a verdict and justifications reflecting how the evidence is used to reach the verdict. Using an LLM-assisted multi-step annotation process, we improve the quality of our annotations and achieve an inter-annotator agreement of đťś… = 0.745 on verdicts. We also develop a baseline for verifying claims against time-series evidence and show that even the state-of-the-art reasoning models like Gemini-2.5-Pro are challenged by time series, achieving a 63.37 accuracy score on verdicts and an Ev2R score of 48.63 on verdict justifications.

2024

pdf bib
Zero-Shot Fact Verification via Natural Logic and Large Language Models
Marek Strong | Rami Aly | Andreas Vlachos
Findings of the Association for Computational Linguistics: EMNLP 2024

The recent development of fact verification systems with natural logic has enhanced their explainability by aligning claims with evidence through set-theoretic operators, providing faithful justifications. Despite these advancements, such systems often rely on a large amount of training data annotated with natural logic. To address this issue, we propose a zero-shot method that utilizes the generalization capabilities of instruction-tuned large language models. To comprehensively assess the zero-shot capabilities of our method and other fact verification systems, we evaluate all models on both artificial and real-world claims, including multilingual datasets. We also compare our method against other fact verification systems in two setups. First, in the zero-shot generalization setup, we demonstrate that our approach outperforms other systems that were not specifically trained on natural logic data, achieving an average accuracy improvement of 8.96 points over the best-performing baseline. Second, in the zero-shot transfer setup, we show that current systems trained on natural logic data do not generalize well to other domains, and our method outperforms these systems across all datasets with real-world claims.

2023

pdf bib
QA-NatVer: Question Answering for Natural Logic-based Fact Verification
Rami Aly | Marek Strong | Andreas Vlachos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Fact verification systems assess a claim’s veracity based on evidence. An important consideration in designing them is faithfulness, i.e. generating explanations that accurately reflect the reasoning of the model. Recent works have focused on natural logic, which operates directly on natural language by capturing the semantic relation of spans between an aligned claim with its evidence via set-theoretic operators. However, these approaches rely on substantial resources for training, which are only available for high-resource languages. To this end, we propose to use question answering to predict natural logic operators, taking advantage of the generalization capabilities of instruction-tuned language models. Thus, we obviate the need for annotated training data while still relying on a deterministic inference system. In a few-shot setting on FEVER, our approach outperforms the best baseline by 4.3 accuracy points, including a state-of-the-art pre-trained seq2seq natural logic system, as well as a state-of-the-art prompt-based classifier. Our system demonstrates its robustness and portability, achieving competitive performance on a counterfactual dataset and surpassing all approaches without further annotation on a Danish verification dataset. A human evaluation indicates that our approach produces more plausible proofs with fewer erroneous natural logic operators than previous natural logic-based systems.