Liaoyaqi Wang


2025

pdf bib
LIFTED: Multimodal Clinical Trial Outcome Prediction via Large Language Models and Mixture-of-Experts
Wenhao Zheng | Liaoyaqi Wang | Dongshen Peng | Hongxia Xu | Yun Li | Hongtu Zhu | Tianfan Fu | Huaxiu Yao
Findings of the Association for Computational Linguistics: EMNLP 2025

Clinical trials are pivotal yet costly processes, often spanning multiple years and requiring substantial expenses, motivating predictive models to identify likely-to-fail drugs early and save resources. Recent approaches leverage deep learning to integrate multimodal data for clinical outcome prediction; however, they rely heavily on manually designed modality-specific encoders, limiting their adaptability to new modalities and ability to effectively share information across modalities. To address these challenges, we propose a multimodal mixture-of-experts (LIFTED) framework. Specifically, LIFTED transforms modality-specific data into natural language descriptions, encoded via unified, noise-resilient encoders. A sparse Mixture-of-Experts mechanism then identifies shared patterns across modalities, extracting consistent representations. Finally, another mixture-of-experts module dynamically integrates these modality representations, emphasizing critical information. Experiments show that LIFTED significantly outperforms baseline methods in predicting clinical trial outcomes across all phases, highlighting the effectiveness of our proposed approach.

2024

pdf bib
GuardEmb: Dynamic Watermark for Safeguarding Large Language Model Embedding Service Against Model Stealing Attack
Liaoyaqi Wang | Minhao Cheng
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language model (LLM) companies provide Embedding as a Service (EaaS) to assist the individual in efficiently dealing with downstream tasks such as text classification and recommendation. However, recent works reveal the risk of the model stealing attack, posing a financial threat to EaaS providers. To protect the copyright of EaaS, we propose GuardEmb, a dynamic embedding watermarking method, striking a balance between enhancing watermark detectability and preserving embedding functionality. Our approach involves selecting special tokens and perturbing embeddings containing these tokens to inject watermarks. Simultaneously, we train a verifier to detect these watermarks. In the event of an attacker attempting to replicate our EaaS for profit, their model inherits our watermarks. For watermark verification, we construct verification texts to query the suspicious EaaS, and the verifier identifies our watermarks within the responses, effectively tracing copyright infringement. Extensive experiments across diverse datasets showcase the high detectability of our watermark method, even in out-of-distribution scenarios, without compromising embedding functionality. Our code is publicly available at https://github.com/Melodramass/Dynamic-Watermark.