Lele Wang
2025
SimMark: A Robust Sentence-Level Similarity-Based Watermarking Algorithm for Large Language Models
Amirhossein Dabiriaghdam
|
Lele Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The widespread adoption of large language models (LLMs) necessitates reliable methods to detect LLM-generated text. We introduce SimMark, a robust sentence-level watermarking algorithm that makes LLMs’ outputs traceable without requiring access to model internals, making it compatible with both open and API-based LLMs. By leveraging the similarity of semantic sentence embeddings combined with rejection sampling to embed detectable statistical patterns imperceptible to humans, and employing a soft counting mechanism, SimMark achieves robustness against paraphrasing attacks. Experimental results demonstrate that SimMark sets a new benchmark for robust watermarking of LLM-generated content, surpassing prior sentence-level watermarking techniques in robustness, sampling efficiency, and applicability across diverse domains, all while maintaining the text quality and fluency.
Test-Time Steering for Lossless Text Compression via Weighted Product of Experts
Qihang Zhang
|
Muchen Li
|
Ziao Wang
|
Renjie Liao
|
Lele Wang
Findings of the Association for Computational Linguistics: EMNLP 2025
Lossless compression techniques are crucial in an era of rapidly growing data. Traditional universal compressors like gzip offer low computational overhead, high speed, and broad applicability across data distributions. However, they often lead to worse compression rates than modern neural compressors, which leverage large-scale training data to model data distributions more effectively.Despite their advantages, neural compressors struggle to generalize to unseen data. To address this limitation, we propose a novel framework that performs Test-Time Steering via a Weighted Product of Experts (wPoE).At inference, our method adaptively combines a universal compression model with a pretrained neural language model, ensuring the compression rate is at least as good as the best individual model.Extensive experiments demonstrate that our approach improves the performance of text compression without requiring fine-tuning. Furthermore, it seamlessly integrates with any autoregressive language model, providing a practical solution for enhancing text compression across diverse data distributions.
2024
BCAmirs at SemEval-2024 Task 4: Beyond Words: A Multimodal and Multilingual Exploration of Persuasion in Memes
Amirhossein Abaskohi
|
Amirhossein Dabiriaghdam
|
Lele Wang
|
Giuseppe Carenini
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
Memes, combining text and images, frequently use metaphors to convey persuasive messages, shaping public opinion. Motivated by this, our team engaged in SemEval-2024 Task 4, a hierarchical multi-label classification task designed to identify rhetorical and psychological persuasion techniques embedded within memes. To tackle this problem, we introduced a caption generation step to assess the modality gap and the impact of additional semantic information from images, which improved our result. Our best model utilizes GPT-4 generated captions alongside meme text to fine-tune RoBERTa as the text encoder and CLIP as the image encoder. It outperforms the baseline by a large margin in all 12 subtasks. In particular, it ranked in top-3 across all languages in Subtask 2a, and top-4 in Subtask 2b, demonstrating quantitatively strong performance. The improvement achieved by the introduced intermediate step is likely attributable to the metaphorical essence of images that challenges visual encoders. This highlights the potential for improving abstract visual semantics encoding.
Search
Fix author
Co-authors
- Amirhossein Dabiriaghdam 2
- Amirhossein Abaskohi 1
- Giuseppe Carenini 1
- Muchen Li 1
- Renjie Liao 1
- show all...