Although large language models (LLMs) have demonstrated outperforming human experts in medical examinations, it remains challenging to adopt LLMs in real-world clinical decision-making that typically involves multi-hop medical reasoning. Common practices include prompting commercial LLMs and fine-tuning LLMs on medical data. However, in the clinical domain, using commercial LLMs raises privacy concerns regarding sensitive patient data. Fine-tuning competitive medical LLMs for different tasks usually requires extensive data and computing resources, which are difficult to acquire, especially in medical institutions with limited infrastructure. We propose DrAgent, which can build LLMs as agents to deliver accurate medical decision-making and reasoning. In implementation, we take a lightweight LLM as the backbone to collaborate with diverse clinical tools. To make efficient use of data, DrAgent introduces recursive curriculum learning to optimize the LLM in an easy-to-hard progression. The results show that our approach achieves competitive performance on diverse datasets.
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs