Lalit K Jain


2025

pdf bib
BIG-Bench Extra Hard
Mehran Kazemi | Bahare Fatemi | Hritik Bansal | John Palowitch | Chrysovalantis Anastasiou | Sanket Vaibhav Mehta | Lalit K Jain | Virginia Aglietti | Disha Jindal | Peter Chen | Nishanth Dikkala | Gladys Tyen | Xin Liu | Uri Shalit | Silvia Chiappa | Kate Olszewska | Yi Tay | Vinh Q. Tran | Quoc V Le | Orhan Firat
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current benchmarks for large language model (LLM) reasoning predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various general-purpose and reasoning-specialized models on BBEH and observe an accuracy of 23.9% for the best general-purpose model and 54.2% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.

pdf bib
Bridging the Creativity Understanding Gap: Small-Scale Human Alignment Enables Expert-Level Humor Ranking in LLMs
Kuan Lok Zhou | Jiayi Chen | Siddharth Suresh | Reuben Narad | Timothy T. Rogers | Lalit K Jain | Robert D Nowak | Bob Mankoff | Jifan Zhang
Findings of the Association for Computational Linguistics: EMNLP 2025

Large Language Models (LLMs) have shown significant limitations in understanding creative content, as demonstrated by Hessel et al. (2023)’s influential work on the New Yorker Cartoon Caption Contest (NYCCC). Their study exposed a substantial gap between LLMs and humans in humor comprehension, establishing that understanding and evaluating creative content is key challenge in AI development. We revisit this challenge by decomposing humor understanding into three components and systematically improve each: enhancing visual understanding through improved annotation, utilizing LLM-generated humor reasoning and explanations, and implementing targeted alignment with human preference data. Our refined approach achieves 82.4% accuracy in caption ranking, significantly improving upon the previous 67% benchmark and matching the performance of world-renowned human experts in this domain. Notably, while attempts to mimic subgroup preferences through various persona prompts showed minimal impact, model finetuning with crowd preferences proved remarkably effective. These findings reveal that LLM limitations in creative judgment can be effectively addressed through focused alignment to specific subgroups and individuals. Lastly, we propose the position that achieving artificial general intelligence necessitates systematic collection of human preference data across creative domains. We advocate that just as human creativity is deeply influenced by individual and cultural preferences, training LLMs with diverse human preference data may be essential for developing true creative understanding.