Kingsum Chow


2025

pdf bib
CLMTracing: Black-box User-level Watermarking for Code Language Model Tracing
Boyu Zhang | Ping He | Tianyu Du | Xuhong Zhang | Lei Yun | Kingsum Chow | Jianwei Yin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

With the widespread adoption of open-source code language models (code LMs), intellectual property (IP) protection has become an increasingly critical concern. While current watermarking techniques have the potential to identify the code LM to protect its IP, they have limitations when facing the more practical and complex demand, i.e., offering the individual user-level tracing in the black-box setting. This work presents CLMTracing, a black-box code LM watermarking framework employing the rule-based watermarks and utility-preserving injection method for user-level model tracing. CLMTracing further incorporates a parameter selection algorithm sensitive to the robust watermark and adversarial training to enhance the robustness against watermark removal attacks. Comprehensive evaluations demonstrate CLMTracing is effective across multiple state-of-the-art (SOTA) code LMs, showing significant harmless improvements compared to existing SOTA baselines and strong robustness against various removal attacks.

2024

pdf bib
SecCoder: Towards Generalizable and Robust Secure Code Generation
Boyu Zhang | Tianyu Du | Junkai Tong | Xuhong Zhang | Kingsum Chow | Sheng Cheng | Xun Wang | Jianwei Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

After large models (LMs) have gained widespread acceptance in code-related tasks, their superior generative capacity has greatly promoted the application of the code LM. Nevertheless, the security of the generated code has raised attention to its potential damage. Existing secure code generation methods have limited generalizability to unseen test cases and poor robustness against the attacked model, leading to safety failures in code generation. In this paper, we propose a generalizable and robust secure code generation method SecCoder by using in-context learning (ICL) and the safe demonstration. The dense retriever is also used to select the most helpful demonstration to maximize the improvement of the generated code’s security. Experimental results show the superior generalizability of the proposed model SecCoder compared to the current secure code generation method, achieving a significant security improvement of an average of 7.20% on unseen test cases. The results also show the better robustness of SecCoder compared to the current attacked code LM, achieving a significant security improvement of an average of 7.74%. Our analysis indicates that SecCoder enhances the security of LMs in generating code, and it is more generalizable and robust.