Junyoung Park


2025

pdf bib
Retrieval-Augmented Generation with Estimation of Source Reliability
Jeongyeon Hwang | Junyoung Park | Hyejin Park | Dongwoo Kim | Sangdon Park | Jungseul Ok
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Retrieval-Augmented Generation (RAG) is an effective approach to enhance the factual accuracy of large language models (LLMs) by retrieving information from external databases, which are typically composed of diverse sources, to supplement the limited internal knowledge of LLMs. However, the standard RAG often risks retrieving incorrect information, as it relies solely on relevance between a query and a document, overlooking the heterogeneous reliability of these sources. To address this issue, we propose Reliability-Aware RAG (RA-RAG), a new multi-source RAG framework that estimates the reliability of sources and leverages this information to prioritize highly reliable and relevant documents, ensuring more robust and accurate response generation. Specifically, RA-RAG first estimates source reliability by cross-checking information across multiple sources. It then retrieves documents from the top-𝜅 reliable and relevant sources and aggregates their information using weighted majority voting (WMV), where the selective retrieval ensures scalability while not compromising the performance. Comprehensive experiments show that RA-RAG consistently outperforms baselines in scenarios with heterogeneous source reliability while scaling efficiently as the number of sources increases. Furthermore, we demonstrate the ability of RA-RAG to estimate real-world sources’ reliability, highlighting its practical applicability. Our code and data are available at RA-RAG.

2024

pdf bib
Towards Efficient Visual-Language Alignment of the Q-Former for Visual Reasoning Tasks
Sungkyung Kim | Adam Lee | Junyoung Park | Andrew Chung | Jusang Oh | Jay-Yoon Lee
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advancements in large language models have demonstrated enhanced capabilities in visual reasoning tasks by employing additional encoders for aligning different modalities. While the Q-Former has been widely used as a general encoder for aligning several modalities including image, video, audio, and 3D with large language models, previous works on its efficient training and the analysis of its individual components have been limited. In this work, we investigate the effectiveness of parameter efficient fine-tuning (PEFT) the Q-Former using InstructBLIP with visual reasoning benchmarks ScienceQA and IconQA. We observe that applying PEFT to the Q-Former achieves comparable performance to full fine-tuning using under 2% of the trainable parameters. Additionally, we employ AdaLoRA for dynamic parameter budget reallocation to examine the relative importance of the Q-Former’s sublayers with 4 different benchmarks. Our findings reveal that the self-attention layers are noticeably more important in perceptual visual-language reasoning tasks, and relative importance of FFN layers depends on the complexity of visual-language patterns involved in tasks. The code is available at https://github.com/AttentionX/InstructBLIP_PEFT.