Jinwen Ma
2025
Beyond Binary Preferences: Semi-Online Label-Free GRACE-KTO with Group-Wise Adaptive Calibration for High-Quality Long-Text Generation
Jingyang Deng
|
Ran Chen
|
Jo-Ku Cheng
|
Jinwen Ma
Findings of the Association for Computational Linguistics: EMNLP 2025
Generating high-quality long-text remains challenging for Large Language Models (LLMs), as conventional supervised fine-tuning fails to ensure overall quality due to its teacher-forcing nature. Kahneman-Tversky Optimization (KTO), as a model alignment method that can holistically optimize generation quality, overcomes the need for paired preference data required by previous methods. However, it still suffers from binary supervision that inadequately reflects varying quality degrees. To address this, we propose GRACE-KTO, a semi-online framework that transforms KTO’s binary signals into dynamically calibrated intra-group rewards. Specifically, GRACE-KTO aggregates responses to identical queries into groups, computes rank-sum scores across multiple linguistic quality dimensions, and applies group-wise and global normalization to adaptively redistribute sample importance. We adopt a semi-online training strategy to reduce costly online sampling while outperforming offline variants. By leveraging query generation with seed data, we minimize labeled data dependency, using the model’s own knowledge to enhance its long-text generation capabilities. Additionally, we extend the context window to 32k tokens using YaRN during inference, enabling the model to generate longer texts while maintaining perplexities. Experiments demonstrate GRACE-KTO’s superiority over vanilla KTO on both automatic metrics and LLM-as-a-Judge evaluations, advancing long-text generation through group-wise adaptive calibration.
2020
Transformation of Dense and Sparse Text Representations
Wenpeng Hu
|
Mengyu Wang
|
Bing Liu
|
Feng Ji
|
Jinwen Ma
|
Dongyan Zhao
Proceedings of the 28th International Conference on Computational Linguistics
Sparsity is regarded as a desirable property of representations, especially in terms of explanation. However, its usage has been limited due to the gap with dense representations. Most research progresses in NLP in recent years are based on dense representations. Thus the desirable property of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a novel Semantic Transformation method to bridge the dense and sparse spaces, which can facilitate the NLP research to shift from dense spaces to sparse spaces or to jointly use both spaces. Experiments using classification tasks and natural language inference task show that the proposed Semantic Transformation is effective.
Translation vs. Dialogue: A Comparative Analysis of Sequence-to-Sequence Modeling
Wenpeng Hu
|
Ran Le
|
Bing Liu
|
Jinwen Ma
|
Dongyan Zhao
|
Rui Yan
Proceedings of the 28th International Conference on Computational Linguistics
Understanding neural models is a major topic of interest in the deep learning community. In this paper, we propose to interpret a general neural model comparatively. Specifically, we study the sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks–machine translation and dialogue response generation–as they both use the seq2seq model. We investigate how the two tasks are different and how their task difference results in major differences in the behaviors of the resulting translation and dialogue generation systems. This study allows us to make several interesting observations and gain valuable insights, which can be used to help develop better translation and dialogue generation models. To our knowledge, no such comparative study has been done so far.