Jingyu Hu
2025
Large Vision-Language Model Alignment and Misalignment: A Survey Through the Lens of Explainability
Dong Shu
|
Haiyan Zhao
|
Jingyu Hu
|
Weiru Liu
|
Ali Payani
|
Lu Cheng
|
Mengnan Du
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in processing both visual and textual information. However, the critical challenge of alignment between visual and textual representations is not fully understood. This survey presents a comprehensive examination of alignment and misalignment in LVLMs through an explainability lens. We first examine the fundamentals of alignment, exploring its representational and behavioral aspects, training methodologies, and theoretical foundations. We then analyze misalignment phenomena across three semantic levels: object, attribute, and relational misalignment. Our investigation reveals that misalignment emerges from challenges at multiple levels: the data level, the model level, and the inference level. We provide a comprehensive review of existing mitigation strategies, categorizing them into parameter-frozen and parameter-tuning approaches. Finally, we outline promising future research directions, emphasizing the need for standardized evaluation protocols and in-depth explainability studies.
2024
Strategic Demonstration Selection for Improved Fairness in LLM In-Context Learning
Jingyu Hu
|
Weiru Liu
|
Mengnan Du
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent studies highlight the effectiveness of using in-context learning (ICL) to steer large language models (LLMs) in processing tabular data, a challenging task given the structured nature of such data. Despite advancements in performance, the fairness implications of these methods are less understood. This study investigates how varying demonstrations within ICL prompts influence the fairness outcomes of LLMs. Our findings reveal that deliberately including minority group samples in prompts significantly boosts fairness without sacrificing predictive accuracy. Further experiments demonstrate that the proportion of minority to majority samples in demonstrations affects the trade-off between fairness and prediction accuracy. Based on these insights, we introduce a mitigation technique that employs clustering and evolutionary strategies to curate a diverse and representative sample set from the training data. This approach aims to enhance both predictive performance and fairness in ICL applications. Experimental results validate that our proposed method dramatically improves fairness across various metrics, showing its efficacy in real-world scenarios.