Jialin Chen


2025

pdf bib
GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models
Jialin Chen | Houyu Zhang | Seongjun Yun | Alejandro Mottini | Rex Ying | Xiang Song | Vassilis N. Ioannidis | Zheng Li | Qingjun Cui
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) has significantly mitigated the hallucinations of Large Language Models (LLMs) by grounding the generation with external knowledge. Recent extensions of RAG to graph-based retrieval offer a promising direction, leveraging the structural knowledge for multi-hop reasoning. However, existing graph RAG typically decouples retrieval and reasoning processes, which prevents the retriever from adapting to the reasoning needs of the LLM. They also struggle with scalability when performing multi-hop expansion over large-scale graphs, or depend heavily on annotated ground-truth entities, which are often unavailable in open-domain settings. To address these challenges, we propose a novel graph retriever trained end-to-end with LLM, which features an attention-based growing and pruning mechanism, adaptively navigating multi-hop relevant entities while filtering out noise. Within the extracted subgraph, structural knowledge and semantic features are encoded via soft tokens and the verbalized graph, respectively, which are infused into the LLM together, thereby enhancing its reasoning capability and facilitating interactive joint training of the graph retriever and the LLM reasoner. Experimental results across three QA benchmarks show that our approach consistently achieves state-of-the-art performance, validating the strength of joint graph–LLM optimization for complex reasoning tasks. Notably, our framework eliminates the need for predefined ground-truth entities by directly optimizing the retriever using LLM logits as implicit feedback, making it especially effective in open-domain settings.

2022

pdf bib
Modeling Hierarchical Reasoning Chains by Linking Discourse Units and Key Phrases for Reading Comprehension
Jialin Chen | Zhuosheng Zhang | Hai Zhao
Proceedings of the 29th International Conference on Computational Linguistics

Machine reading comprehension (MRC) poses new challenges to logical reasoning, which aims to understand the implicit logical relations entailed in the given contexts and perform inference over them. Due to the complexity of logic, logical connections exist at different granularity levels. However, most existing methods of logical reasoning individually focus on either entity-aware or discourse-based information but ignore the hierarchical relations that may even have mutual effects. This paper proposes a holistic graph network (HGN) that deals with context at both discourse-level and word-level as the basis for logical reasoning to provide a more fine-grained relation extraction. Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism to improve the interpretation of MRC systems. Experimental results on logical reasoning QA datasets (ReClor and LogiQA) and natural language inference datasets (SNLI and ANLI) show the effectiveness and generalization of our method, and in-depth analysis verifies its capability to understand complex logical relations.