Ixak Sarasua Antero
2025
DIPLomA: Efficient Adaptation of Instructed LLMs to Low-Resource Languages via Post-Training Delta Merging
Ixak Sarasua Antero
|
Ander Corral
|
Xabier Saralegi
Findings of the Association for Computational Linguistics: EMNLP 2025
This paper investigates how open-weight instruction-tuned large language models (LLMs) can be efficiently adapted to low-resource languages without requiring costly large-scale post-training. We introduce DIPLomA (Decoupled Instruction-Preserving Language Adaptation), a lightweight delta-based transfer strategy that provides a practical and effective solution for this scenario. DIPLomA decouples language adaptation from post-training alignment by first continually pretraining a foundational LLM on a modest amount of monolingual target-language data while anchoring on English replay, and then injecting instruction-following capabilities via delta-based weight merging from the instructed counterpart of the base LLM. We evaluate DIPLomA on Basque and validate its generality on Welsh and Swahili, demonstrating consistent and substantial gains in instruction-following, linguistic proficiency, and safety. Compared to strong baselines, our method achieves average relative improvements of 50 points in Basque, 63 in Welsh, and 51 in Swahili, while preserving the original model’s multilingual performance. These results highlight DIPLomA as an effective, resource-efficient strategy for bringing high-quality instruction alignment to underrepresented languages at scale.
Pipeline Analysis for Developing Instruct LLMs in Low-Resource Languages: A Case Study on Basque
Ander Corral
|
Ixak Sarasua Antero
|
Xabier Saralegi
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large language models (LLMs) are typically optimized for resource-rich languages like English, exacerbating the gap between high-resource and underrepresented languages. This work presents a detailed analysis of strategies for developing a model capable of following instructions in a low-resource language, specifically Basque, by focusing on three key stages: pre-training, instruction tuning, and alignment with human preferences. Our findings demonstrate that continual pre-training with a high-quality Basque corpus of around 600 million words improves natural language understanding (NLU) of the foundational model by over 12 points. Moreover, instruction tuning and human preference alignment using automatically translated datasets proved highly effective, resulting in a 24-point improvement in instruction-following performance. The resulting models, Llama-eus-8B and Llama-eus-8B-instruct, establish a new state-of-the-art for Basque in the sub-10B parameter category.