Ioannis Patras


2025

pdf bib
Get Confused Cautiously: Textual Sequence Memorization Erasure with Selective Entropy Maximization
Zhaohan Zhang | Ziquan Liu | Ioannis Patras
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) have been found to memorize and recite some of the textual sequences from their training set verbatim, raising broad concerns about privacy and copyright issues. This Textual Sequence Memorization (TSM) phenomenon leads to a high demand to regulate LLM output to prevent generating certain memorized text that a user wants to be forgotten. However, our empirical study reveals that existing methods for TSM erasure fail to unlearn large numbers of memorized samples without substantially jeopardizing the model utility. To achieve a better trade-off between the effectiveness of TSM erasure and model utility in LLMs, our paper proposes a new method, named Entropy Maximization with Selective Optimization (EMSO), where the model parameters are updated sparsely based on novel optimization and selection criteria, in a manner that does not require additional models or data other than that in the forget set. More specifically, we propose an entropy-based loss that is shown to lead to more stable optimization and better preserves model utility than existing methods. In addition, we propose a contrastive gradient metric that takes both the gradient magnitude and direction into consideration, so as to localize model parameters to update in a sparse model updating scehme. Extensive experiments across three model scales demonstrate that our method excels in handling large-scale forgetting requests while preserving model ability in language generation and understanding.

pdf bib
FairCoT: Enhancing Fairness in Text-to-Image Generation via Chain of Thought Reasoning with Multimodal Large Language Models
Zahraa Al Sahili | Ioannis Patras | Matthew Purver
Findings of the Association for Computational Linguistics: EMNLP 2025

In the domain of text-to-image generative models, biases inherent in training datasets often propagate into generated content, posing significant ethical challenges, particularly in socially sensitive contexts. We introduce FairCoT, a novel framework that enhances fairness in text-to-image models through Chain-of-Thought (CoT) reasoning within multimodal generative large language models. FairCoT employs iterative CoT refinement to systematically mitigate biases, and dynamically adjusts textual prompts in real time, ensuring diverse and equitable representation in generated images. By integrating iterative reasoning processes, FairCoT addresses the limitations of zero-shot CoT in sensitive scenarios, balancing creativity with ethical responsibility. Experimental evaluations across popular text-to-image systems—including DALL-E and various Stable Diffusion variants—demonstrate that FairCoT significantly enhances fairness and diversity without sacrificing image quality or semantic fidelity. By combining robust reasoning, lightweight deployment, and extensibility to multiple models, FairCoT represents a promising step toward more socially responsible and transparent AI-driven content generation.

2023

pdf bib
A Simple Baseline for Knowledge-Based Visual Question Answering
Alexandros Xenos | Themos Stafylakis | Ioannis Patras | Georgios Tzimiropoulos
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA). Recent works have emphasized the significance of incorporating both explicit (through external databases) and implicit (through LLMs) knowledge to answer questions requiring external knowledge effectively. A common limitation of such approaches is that they consist of relatively complicated pipelines and often heavily rely on accessing GPT-3 API. Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline which, in a nutshell, is based on efficient in-context learning by prompting LLaMA (1 and 2) using question-informative captions as contextual information. Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and yet achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets. Finally, we perform several ablation studies to understand important aspects of our method. Our code is publicly available at https://github.com/alexandrosXe/ASimple-Baseline-For-Knowledge-Based-VQA