Hyunwoo J. Kim


2025

pdf bib
Captioning for Text-Video Retrieval via Dual-Group Direct Preference Optimization
Ji Soo Lee | Byungoh Ko | Jaewon Cho | Howoong Lee | Jaewoon Byun | Hyunwoo J. Kim
Findings of the Association for Computational Linguistics: EMNLP 2025

In text-video retrieval, auxiliary captions are often used to enhance video understanding, bridging the gap between the modalities. While recent advances in multi-modal large language models (MLLMs) have enabled strong zero-shot caption generation, we observe that such captions tend to be generic and indistinguishable across visually similar videos, limiting their utility for fine-grained retrieval. Moreover, conventional captioning approaches are typically evaluated using language generation metrics, such as BLEU, which are not typically tailored for retrieval tasks that require making discriminative distinctions between candidates. To address this, we propose CaRe-DPO, a retrieval framework that directly optimizes caption generation using retrieval relevance scores. At its core is Dual-Group Direct Preference Optimization (DG-DPO), a novel learning strategy that supervises captioning by modeling preferences across groups of distinct video and caption pairs. In addition, we present an MLLM-based retrieval model that incorporates role-embeddings to better distinguish between textual inputs with different functional roles, such as an auxiliary caption and a text query. Through extensive experiments, we demonstrate that CaRe-DPO significantly enhances retrieval performance by effectively leveraging auxiliary knowledge to generate fine-grained captions for retrieval. Code is available at https://github.com/mlvlab/CaReDPO.

2024

pdf bib
Generative Subgraph Retrieval for Knowledge Graph–Grounded Dialog Generation
Jinyoung Park | Minseok Joo | Joo-Kyung Kim | Hyunwoo J. Kim
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Knowledge graph–grounded dialog generation requires retrieving a dialog-relevant subgraph from the given knowledge base graph and integrating it with the dialog history. Previous works typically represent the graph using an external encoder, such as graph neural networks, and retrieve relevant triplets based on the similarity between single-vector representations of triplets and the dialog history. However, these external encoders fail to leverage the rich knowledge of pretrained language models, and the retrieval process is also suboptimal due to the information bottleneck caused by the single-vector abstraction of the dialog history. In this work, we propose Dialog generation with Generative Subgraph Retrieval (DialogGSR), which retrieves relevant knowledge subgraphs by directly generating their token sequences on top of language models. For effective generative subgraph retrieval, we introduce two key methods: (i) structure-aware knowledge graph linearization with self-supervised graph-specific tokens and (ii) graph-constrained decoding utilizing graph structural proximity-based entity informativeness scores for valid and relevant generative retrieval. DialogGSR achieves state-of-the-art performance in knowledge graph–grounded dialog generation, as demonstrated on OpenDialKG and KOMODIS datasets.