Houyu Zhang


2025

pdf bib
GRIL: Knowledge Graph Retrieval-Integrated Learning with Large Language Models
Jialin Chen | Houyu Zhang | Seongjun Yun | Alejandro Mottini | Rex Ying | Xiang Song | Vassilis N. Ioannidis | Zheng Li | Qingjun Cui
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) has significantly mitigated the hallucinations of Large Language Models (LLMs) by grounding the generation with external knowledge. Recent extensions of RAG to graph-based retrieval offer a promising direction, leveraging the structural knowledge for multi-hop reasoning. However, existing graph RAG typically decouples retrieval and reasoning processes, which prevents the retriever from adapting to the reasoning needs of the LLM. They also struggle with scalability when performing multi-hop expansion over large-scale graphs, or depend heavily on annotated ground-truth entities, which are often unavailable in open-domain settings. To address these challenges, we propose a novel graph retriever trained end-to-end with LLM, which features an attention-based growing and pruning mechanism, adaptively navigating multi-hop relevant entities while filtering out noise. Within the extracted subgraph, structural knowledge and semantic features are encoded via soft tokens and the verbalized graph, respectively, which are infused into the LLM together, thereby enhancing its reasoning capability and facilitating interactive joint training of the graph retriever and the LLM reasoner. Experimental results across three QA benchmarks show that our approach consistently achieves state-of-the-art performance, validating the strength of joint graph–LLM optimization for complex reasoning tasks. Notably, our framework eliminates the need for predefined ground-truth entities by directly optimizing the retriever using LLM logits as implicit feedback, making it especially effective in open-domain settings.

2020

pdf bib
Grounded Conversation Generation as Guided Traverses in Commonsense Knowledge Graphs
Houyu Zhang | Zhenghao Liu | Chenyan Xiong | Zhiyuan Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Human conversations naturally evolve around related concepts and hop to distant concepts. This paper presents a new conversation generation model, ConceptFlow, which leverages commonsense knowledge graphs to explicitly model conversation flows. By grounding conversations to the concept space, ConceptFlow represents the potential conversation flow as traverses in the concept space along commonsense relations. The traverse is guided by graph attentions in the concept graph, moving towards more meaningful directions in the concept space, in order to generate more semantic and informative responses. Experiments on Reddit conversations demonstrate ConceptFlow’s effectiveness over previous knowledge-aware conversation models and GPT-2 based models while using 70% fewer parameters, confirming the advantage of explicit modeling conversation structures. All source codes of this work are available at https://github.com/thunlp/ConceptFlow.