Hongtu Zhu
2025
LIFTED: Multimodal Clinical Trial Outcome Prediction via Large Language Models and Mixture-of-Experts
Wenhao Zheng
|
Liaoyaqi Wang
|
Dongshen Peng
|
Hongxia Xu
|
Yun Li
|
Hongtu Zhu
|
Tianfan Fu
|
Huaxiu Yao
Findings of the Association for Computational Linguistics: EMNLP 2025
Clinical trials are pivotal yet costly processes, often spanning multiple years and requiring substantial expenses, motivating predictive models to identify likely-to-fail drugs early and save resources. Recent approaches leverage deep learning to integrate multimodal data for clinical outcome prediction; however, they rely heavily on manually designed modality-specific encoders, limiting their adaptability to new modalities and ability to effectively share information across modalities. To address these challenges, we propose a multimodal mixture-of-experts (LIFTED) framework. Specifically, LIFTED transforms modality-specific data into natural language descriptions, encoded via unified, noise-resilient encoders. A sparse Mixture-of-Experts mechanism then identifies shared patterns across modalities, extracting consistent representations. Finally, another mixture-of-experts module dynamically integrates these modality representations, emphasizing critical information. Experiments show that LIFTED significantly outperforms baseline methods in predicting clinical trial outcomes across all phases, highlighting the effectiveness of our proposed approach.
2024
RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models
Peng Xia
|
Kangyu Zhu
|
Haoran Li
|
Hongtu Zhu
|
Yun Li
|
Gang Li
|
Linjun Zhang
|
Huaxiu Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model’s generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RAFE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy.