Guang Yang


2025

pdf bib
Beyond Sequences: Two-dimensional Representation and Dependency Encoding for Code Generation
Xiangyu Zhang | Yu Zhou | Guang Yang | Wei Cheng | Taolue Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The advent of large language models has significantly advanced automatic code generation, transforming the way programmers writing code. Inspired by natural language processing, mainstream code generation approaches represent code as a linear sequence of tokens. In this paper, we propose to represent code snippets as two-dimensional entities, where both code lines and tokens within lines are explicitly modeled. This representation allows us to capture the hierarchical and spatial structure of code, especially the dependencies between code lines. Our method CoDE introduces a dependency encoding approach that leverages dictionary learning to perform semantic matching between code lines. As such, it avoids the reliance on strict position indices, leading to better generalization to code with diverse context and lengths. We thoroughly evaluate CoDE based on four categories of tasks. The experimental results showcase its generalizability, context understanding and retrieval, as well as interpretability in code generation.

pdf bib
The Staircase of Ethics: Probing LLM Value Priorities through Multi-Step Induction to Complex Moral Dilemmas
Ya Wu | Qiang Sheng | Danding Wang | Guang Yang | Yifan Sun | Zhengjia Wang | Yuyan Bu | Juan Cao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Ethical decision-making is a critical aspect of human judgment, and the growing use of LLMs in decision-support systems necessitates a rigorous evaluation of their moral reasoning capabilities. However, existing assessments primarily rely on single-step evaluations, failing to capture how models adapt to evolving ethical challenges. Addressing this gap, we introduce the Multi-step Moral Dilemmas (MMDs), the first dataset specifically constructed to evaluate the evolving moral judgments of LLMs across 3,302 five-stage dilemmas. This framework enables a fine-grained, dynamic analysis of how LLMs adjust their moral reasoning across escalating dilemmas. Our evaluation of nine widely used LLMs reveals that their value preferences shift significantly as dilemmas progress, indicating that models recalibrate moral judgments based on scenario complexity. Furthermore, pairwise value comparisons demonstrate that while LLMs often prioritize the value of care, this value can sometimes be superseded by fairness in certain contexts, highlighting the dynamic and context-dependent nature of LLM ethical reasoning. Our findings call for a shift toward dynamic, context-aware evaluation paradigms, paving the way for more human-aligned and value-sensitive development of LLMs.

pdf bib
Forewarned is Forearmed: Pre-Synthesizing Jailbreak-like Instructions to Enhance LLM Safety Guardrail to Potential Attacks
Sheng Liu | Qiang Sheng | Danding Wang | Yang Li | Guang Yang | Juan Cao
Findings of the Association for Computational Linguistics: EMNLP 2025

Despite advances in improving large language model (LLM) to refuse to answer malicious instructions, widely used LLMs remain vulnerable to jailbreak attacks where attackers generate instructions with distributions differing from safety alignment corpora. New attacks expose LLMs’ inability to recognize unseen malicious instructions, highlighting a critical distributional mismatch between training data and real-world attacks that forces developers into reactive patching cycles. To tackle this challenge, we propose **IMAGINE**, a synthesis framework that leverages embedding space distribution analysis to generate jailbreak-like instructions. This approach effectively fills the distributional gap between authentic jailbreak patterns and safety alignment corpora. IMAGINE follows an iterative optimization process that dynamically evolves text generation distributions across iterations, thereby augmenting the coverage of safety alignment data distributions through synthesized data examples. Based on the safety-aligned corpus enhanced through IMAGINE, our framework demonstrates significant decreases in attack success rate on Qwen2.5, Llama3.1, and Llama3.2 without compromising their utility.

pdf bib
HGAdapter: Hypergraph-based Adapters in Language Models for Code Summarization and Clone Detection
Guang Yang | Yujie Zhu
Findings of the Association for Computational Linguistics: EMNLP 2025

Pre-trained language models (PLMs) are increasingly being applied to code-related tasks. Although PLMs have achieved good results, they do not take into account potential high-order data correlations within the code. We propose three types of high-order correlations in code tokens, i.e. abstract syntax tree family correlation, lexical correlation, and line correlation. We design a tokens and hyperedges generator to capture these high-order data correlations. We improve the architecture of hypergraph neural networks and combine it with adapter tuning to propose a novel hypergraph-based adapter (HGAdapter) to fine-tune PLMs. HGAdapter can encode high-order data correlations and is allowed to be inserted into various PLMs to enhance performance. Experiments were conducted on several public datasets, including six languages of code summarization and code clone detection tasks. Our methods improved the performance of PLMs in datasets to varying degrees. Experimental results validate the introduction of high-order data correlations that contribute to improved effectiveness.

2023

pdf bib
Syntax-Aware Retrieval Augmented Code Generation
Xiangyu Zhang | Yu Zhou | Guang Yang | Taolue Chen
Findings of the Association for Computational Linguistics: EMNLP 2023

Neural code generation models are nowadays widely adopted to generate code from natural language descriptions automatically. Recently, pre-trained neural models equipped with token-level retrieval capabilities have exhibited great potentials in neural machine translation. However, applying them directly to code generation experience challenges: the use of the retrieval-based mechanism inevitably introduces extraneous noise to the generation process, resulting in even syntactically incorrect code. Computationally, such models necessitate frequent searches of the cached datastore, which turns out to be time-consuming. To address these issues, we propose kNN-TRANX, a token-level retrieval augmented code generation method. kNN-TRANX allows for searches in smaller datastores tailored for the code generation task. It leverages syntax constraints for the retrieval of datastores, which reduces the impact of retrieve noise. We evaluate kNN-TRANX on two public datasets and the experimental results confirm the effectiveness of our approach.

2022

pdf bib
MCS: An In-battle Commentary System for MOBA Games
Xiaofeng Qi | Chao Li | Zhongping Liang | Jigang Liu | Cheng Zhang | Yuanxin Wei | Lin Yuan | Guang Yang | Lanxiao Huang | Min Li
Proceedings of the 29th International Conference on Computational Linguistics

This paper introduces a generative system for in-battle real-time commentary in mobile MOBA games. Event commentary is important for battles in MOBA games, which is applicable to a wide range of scenarios like live streaming, e-sports commentary and combat information analysis. The system takes real-time match statistics and events as input, and an effective transform method is designed to convert match statistics and utterances into consistent encoding space. This paper presents the general framework and implementation details of the proposed system, and provides experimental results on large-scale real-world match data.