George Zerveas


2025

pdf bib
Beyond Contrastive Learning: Synthetic Data Enables List-wise Training with Multiple Levels of Relevance
Reza Esfandiarpoor | George Zerveas | Ruochen Zhang | Macton Mgonzo | Carsten Eickhoff | Stephen Bach
Findings of the Association for Computational Linguistics: EMNLP 2025

Although synthetic data has changed various aspects of information retrieval (IR) pipelines, the main training paradigm remains: contrastive learning with binary relevance labels, where one positive document is compared against several negatives using the InfoNCE loss. This objective treats all documents that are not explicitly annotated as relevant on an equally negative footing, regardless of their actual degree of relevance, thus missing subtle nuances useful for ranking. To overcome this limitation, in this work, we forgo real documents and annotations and use large language models to directly generate synthetic documents that answer the MS MARCO queries according to _several different levels of relevance_. We also propose using Wasserstein distance as a more effective loss function for training transformer-based retrievers with graduated relevance labels. Our experiments on MS MARCO and BEIR benchmark show that our proposed approach outperforms conventional training with InfoNCE by a large margin. Without using any real documents, our method significantly improves self-supervised retrievers and is more robust to distribution shift compared to contrastive learning using real data. Our method also successfully integrates existing real data into the synthetic ranking context, further boosting the performance. Overall, we show that generating multi-level ranking contexts is a better approach to synthetic data generation for IR than just generating the standard positive and negative documents.

2023

pdf bib
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Deepak Kumar | Oleg Lesota | George Zerveas | Daniel Cohen | Carsten Eickhoff | Markus Schedl | Navid Rekabsaz
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Large pre-trained language models contain societal biases and carry along these biases to downstream tasks. Current in-processing bias mitigation approaches (like adversarial training) impose debiasing by updating a model’s parameters, effectively transferring the model to a new, irreversible debiased state. In this work, we propose a novel approach to develop stand-alone debiasing functionalities separate from the model, which can be integrated into the model on-demand, while keeping the core model untouched. Drawing from the concept of AdapterFusion in multi-task learning, we introduce DAM (Debiasing with Adapter Modules) – a debiasing approach to first encapsulate arbitrary bias mitigation functionalities into separate adapters, and then add them to the model on-demand in order to deliver fairness qualities. We conduct a large set of experiments on three classification tasks with gender, race, and age as protected attributes. Our results show that DAM improves or maintains the effectiveness of bias mitigation, avoids catastrophic forgetting in a multi-attribute scenario, and maintains on-par task performance, while granting parameter-efficiency and easy switching between the original and debiased models.

pdf bib
Enhancing the Ranking Context of Dense Retrieval through Reciprocal Nearest Neighbors
George Zerveas | Navid Rekabsaz | Carsten Eickhoff
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Sparse annotation poses persistent challenges to training dense retrieval models; for example, it distorts the training signal when unlabeled relevant documents are used spuriously as negatives in contrastive learning. To alleviate this problem, we introduce evidence-based label smoothing, a novel, computationally efficient method that prevents penalizing the model for assigning high relevance to false negatives. To compute the target relevance distribution over candidate documents within the ranking context of a given query, we assign a non-zero relevance probability to those candidates most similar to the ground truth based on the degree of their similarity to the ground-truth document(s). To estimate relevance we leverage an improved similarity metric based on reciprocal nearest neighbors, which can also be used independently to rerank candidates in post-processing. Through extensive experiments on two large-scale ad hoc text retrieval datasets, we demonstrate that reciprocal nearest neighbors can improve the ranking effectiveness of dense retrieval models, both when used for label smoothing, as well as for reranking. This indicates that by considering relationships between documents and queries beyond simple geometric distance we can effectively enhance the ranking context.

2022

pdf bib
CODER: An efficient framework for improving retrieval through COntextual Document Embedding Reranking
George Zerveas | Navid Rekabsaz | Daniel Cohen | Carsten Eickhoff
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Contrastive learning has been the dominant approach to training dense retrieval models. In this work, we investigate the impact of ranking context - an often overlooked aspect of learning dense retrieval models. In particular, we examine the effect of its constituent parts: jointly scoring a large number of negatives per query, using retrieved (query-specific) instead of random negatives, and a fully list-wise loss.To incorporate these factors into training, we introduce Contextual Document Embedding Reranking (CODER), a highly efficient retrieval framework. When reranking, it incurs only a negligible computational overhead on top of a first-stage method at run time (approx. 5 ms delay per query), allowing it to be easily combined with any state-of-the-art dual encoder method. Models trained through CODER can also be used as stand-alone retrievers.Evaluating CODER in a large set of experiments on the MS MARCO and TripClick collections, we show that the contextual reranking of precomputed document embeddings leads to a significant improvement in retrieval performance. This improvement becomes even more pronounced when more relevance information per query is available, shown in the TripClick collection, where we establish new state-of-the-art results by a large margin.