Gaurav Srivastava


2025

pdf bib
ThinkSLM: Towards Reasoning in Small Language Models
Gaurav Srivastava | Shuxiang Cao | Xuan Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Reasoning has long been viewed as an emergent property of large language models (LLMs). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. This paper introduces ThinkSLM, the first extensive benchmark to systematically evaluate and study the reasoning abilities of SLMs trained from scratch or derived from LLMs through quantization, pruning, and distillation. We first establish a reliable evaluation criterion comparing available methods and LLM judges against our human evaluations. Then we present a study evaluating 72 diverse SLMs from six major model families across 17 reasoning benchmarks. We repeat all our experiments three times to ensure a robust assessment. Our findings show that: 1) reasoning ability in SLMs is strongly influenced by training methods and data quality rather than solely model scale; 2) quantization preserves reasoning capability, while pruning significantly disrupts it; 3) larger models consistently exhibit higher robustness against adversarial perturbations and intermediate reasoning, but certain smaller models closely match or exceed the larger models’ performance. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. Our ThinkSLM Leaderboard is publicly available at: https://ctrl-gaurav.github.io/thinkslm.github.io/.

pdf bib
DEBATE, TRAIN, EVOLVE: Self‐Evolution of Language Model Reasoning
Gaurav Srivastava | Zhenyu Bi | Meng Lu | Xuan Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on seven reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities. Our framework code and trained models are publicly available at https://github.com/ctrl-gaurav/Debate-Train-Evolve.