Feng Zhou


2025

pdf bib
BiLD: Bi-directional Logits Difference Loss for Large Language Model Distillation
Minchong Li | Feng Zhou | Xiaohui Song
Proceedings of the 31st International Conference on Computational Linguistics

In recent years, large language models (LLMs) have shown exceptional capabilities across various natural language processing (NLP) tasks. However, such impressive performance often comes with the trade-off of an increased parameter size, posing significant challenges for widespread deployment. Knowledge distillation (KD) provides a solution by transferring knowledge from a large teacher model to a smaller student model. In this paper, we explore the task-specific distillation of LLMs at the logit level. Our investigation reveals that the logits of fine-tuned LLMs exhibit a more extreme long-tail distribution than those from vision models, with hidden “noise” in the long tail affecting distillation performance. Furthermore, existing logits distillation methods often struggle to effectively utilize the internal ranking information from the logits. To address these, we propose the Bi-directional Logits Difference (BiLD) loss. The BiLD loss filters out the long-tail noise by utilizing only top-k teacher and student logits, and leverages the internal logits ranking information by constructing logits differences. To evaluate BiLD loss, we conduct comprehensive experiments on 13 datasets using two types of LLMs. Our results show that the BiLD loss, with only the top-8 logits, outperforms supervised fine-tuning (SFT), vanilla KL loss, and five other distillation methods from both NLP and CV fields.

pdf bib
Align Attention Heads Before Merging Them: An Effective Way for Converting MHA to GQA
Qingyun Jin | Xiaohui Song | Feng Zhou | Zengchang Qin
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have demonstrated exceptional performance across diverse natural language processing tasks. However, as the model size and the input sequence’s length increase, the linearly increasing key-value (KV) cache significantly degrades inference throughput. Therefore, grouped-query attention (GQA), as an alternative to multi-head attention (MHA), has been widely introduced into LLMs. In this work, we propose a cost-effective method for converting MHA into GQA with any compression ratio of KV heads. The key point of our method lies in the application of Procrustes analysis to the attention heads, which enhances the similarity among attention heads while preserving computational invariance, thereby improving the model’s post-training performance. Subsequently, we employ L0 regularization to prune redundant parameters. The model after pruning can be adapted to the standard GQA framework. Experimental results show that our strategy can compress up to 87.5% KV heads of LLaMA2-7B model and 75% KV heads of Sheared-LLaMA-1.3B with acceptable performance degradation. Our code is released at https://github.com/fpcsong/mha2gqa.

2024

pdf bib
Enhancing Phrase Representation by Information Bottleneck Guided Text Diffusion Process for Keyphrase Extraction
Yuanzhen Luo | Qingyu Zhou | Feng Zhou
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize keyphrase information, which may result in biased results. In this study, we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss, respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of keyphrases and the document. Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.

2023

pdf bib
A Frustratingly Easy Plug-and-Play Detection-and-Reasoning Module for Chinese Spelling Check
Haojing Huang | Jingheng Ye | Qingyu Zhou | Yinghui Li | Yangning Li | Feng Zhou | Hai-Tao Zheng
Findings of the Association for Computational Linguistics: EMNLP 2023

In recent years, Chinese Spelling Check (CSC) has been greatly improved by designing task-specific pre-training methods or introducing auxiliary tasks, which mostly solve this task in an end-to-end fashion. In this paper, we propose to decompose the CSC workflow into detection, reasoning, and searching subtasks so that the rich external knowledge about the Chinese language can be leveraged more directly and efficiently. Specifically, we design a plug-and-play detection-and-reasoning module that is compatible with existing SOTA non-autoregressive CSC models to further boost their performance. We find that the detection-and-reasoning module trained for one model can also benefit other models. We also study the primary interpretability provided by the task decomposition. Extensive experiments and detailed analyses demonstrate the effectiveness and competitiveness of the proposed module.