Fei Jiang
2025
HierGR: Hierarchical Semantic Representation Enhancement for Generative Retrieval in Food Delivery Search
Fuwei Zhang
|
Xiaoyu Liu
|
Xinyu Jia
|
Yingfei Zhang
|
Zenghua Xia
|
Fei Jiang
|
Fuzhen Zhuang
|
Wei Lin
|
Zhao Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)
Food delivery search aims to quickly retrieve deliverable items that meet users’ needs, typically requiring faster and more accurate query understanding compared to traditional e-commerce search. Generative retrieval (GR), an emerging search paradigm, harnesses the advanced query understanding capabilities of large language models (LLMs) to enhance the retrieval of results for complex and long-tail queries in food delivery search scenarios. However, there are still challenges in deploying GR to online scenarios: 1) **the large scale of items**; 2) **latency constraints unmet by LLM inference in online retrieval**; and 3) **strong location-based service restrictions on generated items**. To explore the application of GR in food delivery search, we optimize both offline training and online deployment, proposing **Hier**archical semantic representation enhancement for **G**enerative **R**etrieval (HierGR). Specifically, for the generation of semantic IDs, we propose an optimization method that refines the residual quantization process to generate hierarchically semantic IDs for items. Additionally, to successfully deploy on a well-known food delivery platform, we utilize the query cache mechanism and integrate the GR model with the online dense retrieval model to fulfill real-world search requirements. Online A/B testing results show that our proposed method increases **the number of online orders by 0.68%** for complex search intents. The source code is available at https://github.com/zhangfw123/HierGR.
Beyond Static Testbeds: An Interaction-Centric Agent Simulation Platform for Dynamic Recommender Systems
Song Jin
|
Juntian Zhang
|
Yuhan Liu
|
Xun Zhang
|
Yufei Zhang
|
Guojun Yin
|
Fei Jiang
|
Wei Lin
|
Rui Yan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Evaluating and iterating upon recommender systems is crucial, yet traditional A/B testing is resource-intensive, and offline methods struggle with dynamic user-platform interactions. While agent-based simulation is promising, existing platforms often lack a mechanism for user actions to dynamically reshape the environment. To bridge this gap, we introduce RecInter , a novel agent-based simulation platform for recommender systems featuring a robust interaction mechanism. In RecInter platform, simulated user actions (e.g., likes, reviews, purchases) dynamically update item attributes in real-time, and introduced Merchant Agents can reply, fostering a more realistic and evolving ecosystem. High-fidelity simulation is ensured through Multidimensional User Profiling module, Advanced Agent Architecture, and LLM fine-tuned on Chain-of-Thought (CoT) enriched interaction data. Our platform achieves significantly improved simulation credibility and successfully replicates emergent phenomena like Brand Loyalty and the Matthew Effect. Experiments demonstrate that this interaction mechanism is pivotal for simulating realistic system evolution, establishing our platform as a credible testbed for recommender systems research. All codes are released in https://github.com/jinsong8/RecInter.